Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A flexible and stable power supply is essential to the rapid development of wearable electronic devices. In this work, a transparent, flexible, temperature-stable and ionogel electrode-based self-healing triboelectric nanogenerator (IS-TENG) was developed. The ionogel with excellent stretchability (1,012%), high ionic conductivity (0.3 S·m−1) and high-temperature stability (temperature range of −77 to 250 °C) was used as the electrode of the IS-TENG. The IS-TENG exhibited excellent transparency (92.1%) and stability. The output performance did not decrease when placed in a 60 °C oven for 48 h. In addition, the IS-TENG behaved like a stable output in the range of −20 to 60 °C. More importantly, the IS-TENG could also achieve self-healing of electrical performance at temperatures between −20 and 60 °C and its output can be restored to its original state after healing. When the single-electrode IS-TENG with an area of 3 cm × 3 cm was conducted under the working frequency of 1.5 Hz, the output values for open-circuit voltage, short-circuit current, short-circuit transferred charge, and maximum peak power density were 189 V, 6.2 μA, 57 nC, and 2.17 W·m−2, respectively. The IS-TENG enables to harvest biomechanical energy, and drive electronic devices. Furthermore, the application of IS-TENGs as self-driven sensors for detecting human behavior was also demonstrated, showing good application prospects in the field of wearable power technology and self-driven sensing.
Liu, T.; Liu, M. M.; Dou, S.; Sun, J. M.; Cong, Z. F.; Jiang, C. Y.; Du, C. H.; Pu, X.; Hu, W. G.; Wang, Z. L. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 2018, 12, 2818–2826.
Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.
Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.
Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.
Wehner, M.; Truby, R. L.; Fitzgerald, D. J.; Mosadegh, B.; Whitesides, G. M.; Lewis, J. A.; Wood, R. J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451–455.
Jao, Y. T.; Yang, P. K.; Chiu, C. M.; Lin, Y. J.; Chen, S. W.; Choi, D.; Lin, Z. H. A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy 2018, 50, 513–520.
Wen, Z.; Yeh, M. H.; Guo, H. Y.; Wang, J.; Zi, Y. L.; Xu, W. D.; Deng, J. N.; Zhu, L.; Wang, X.; Hu, C. G. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097.
Xie, L. J.; Chen, X. P.; Wen, Z.; Yang, Y. Q.; Shi, J. H.; Chen, C.; Peng, M. F.; Liu, Y. N.; Sun, X. H. Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano–Micro Lett. 2019, 11, 39.
Shi, Q. F.; He, T. Y. Y.; Lee, C. More than energy harvesting-combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 2019, 57, 851–871.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 2018, 11, 4313–4322.
Li, X. J.; Jiang, C. M.; Zhao, F. N.; Lan, L. Y.; Yao, Y.; Yu, Y. H.; Ping, J. F.; Ying, Y. B. Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 2019, 61, 78–85.
Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Zheng, H. C.; Shao, H. Y.; Xia, Y. J.; Chen, C.; Lan, H. W.; Xie, X. K. et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018, 12, 2027–2034.
Lv, P. L.; Shi, L.; Fan, C. Y.; Gao, Y. Y.; Yang, A. J.; Wang, X. H.; Ding, S. J.; Rong, M. Z. Hydrophobic ionic liquid gel-based triboelectric nanogenerator: Next generation of ultrastable, flexible, and transparent power sources for sustainable electronics. ACS Appl. Mater. Interfaces 2020, 12, 15012–15022.
Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator.ACS Nano 2016, 10, 4797–4805.
Ye, C.; Xu, Q. F.; Ren, J.; Ling, S. J. Violin string inspired core-sheath silk/steel yarns for wearable triboelectric nanogenerator applications. Adv. Fiber Mater. 2020, 2, 24–33.
Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.
Chen, S.; Huang, T.; Zuo, H.; Qian, S. H.; Guo, Y. F.; Sun, L. J.; Lei, D.; Wu, Q. L.; Zhu, B.; He, C. L. et al. A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics. Adv. Funct. Mater. 2018, 28, 1805108.
Wen, Z.; Yang, Y. Q.; Sun, N.; Li, G. F.; Liu, Y. N.; Chen, C.; Shi, J. H.; Xie, L. J.; Jiang, H. X.; Bao, D. Q. et al. A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors. Adv. Funct. Mater. 2018, 28, 1803684.
Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.
Parida, K.; Kumar, V.; Wang, J. X.; Bhavanasi, V.; Bendi, R.; Lee, P. S. Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 2017, 29, 1702181.
Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.
Chen, H. T.; Song, Y.; Cheng, X. L.; Zhang, H. X. Self-powered electronic skin based on the triboelectric generator. Nano Energy 2019, 56, 252–268.
Deng, J. N.; Kuang, X.; Liu, R. Y.; Ding, W. B.; Wang, A. C.; Lai, Y. C.; Dong, K.; Wen, Z.; Wang, Y. X.; Wang, L. L. et al. Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 2018, 30, 1705918.
Wu, C. S.; Wang, X.; Lin, L.; Guo, H. Y.; Wang, Z. L. Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 2016, 10, 4652–4659.
Dong, K.; Wu, Z. Y.; Deng, J. N.; Wang, A. C.; Zou, H. Y.; Chen, C. Y.; Hu, D. M.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 2018, 30, 1804944.
Lim, G. H.; Kwak, S. S.; Kwon, N.; Kim, T.; Kim, H.; Kim, S. M.; Kim, S. W.; Lim, B. Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 2017, 42, 300–306.
Yi, F.; Wang, J.; Wang, X. F.; Niu, S. M.; Li, S. M.; Liao, Q. L.; Xu, Y. L.; You, Z.; Zhang, Y.; Wang, Z. L. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano 2016, 10, 6519–6525.
Lai, Y. C.; Deng, J. N.; Niu, S. M.; Peng, W. B.; Wu, C. S.; Liu, R. Y.; Wen, Z.; Wang, Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 2016, 28, 10024–10032.
Chen, Y. H.; Pu, X.; Liu, M. M.; Kuang, S. Y.; Zhang, P. P.; Hua, Q. L.; Cong, Z. F.; Guo, W. B.; Hu, W. G.; Wang, Z. L. Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification. ACS Nano 2019, 13, 8936–8945.
Guan, Q. B.; Lin, G. H.; Gong, Y. Z.; Wang, J. F.; Tan, W. Y.; Bao, D. Q.; Liu, Y. N.; You, Z. W.; Sun, X. H.; Wen, Z. et al. Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 2019, 7, 13948–13955.
Bao, D. Q.; Wen, Z.; Shi, J. H.; Xie, L. J.; Jiang, H. X.; Jiang, J. X.; Yang, Y. Q.; Liao, W. Q.; Sun, X. H. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 2020, 8, 13787–13794.
Lai, Y. C.; Wu, H. M.; Lin, H. C.; Chang, C. L.; Chou, H. H.; Hsiao, Y. C.; Wu, Y. C. Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 2019, 29, 1904626.
Wang, L. Y.; Daoud, W. A. Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor. Nano Energy 2019, 66, 104080.
Shuai, L. Y. Z.; Guo, Z. H.; Zhang, P. P.; Wan, J. M.; Pu, X.; Wang, Z. L. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 2020, 78, 105389.
Chen, B. D.; Tang, W.; Jiang, T.; Zhu, L. P.; Chen, X. Y.; He, C.; Xu, L.; Guo, H. Y.; Lin, P.; Li, D. et al. Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 2018, 45, 380–389.
Zhang, P. P.; Chen, Y. H.; Guo, Z. H.; Guo, W. B.; Pu, X.; Wang, Z. L. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv. Funct. Mater. 2020, 30, 1909252.
Mo, F. N.; Liang, G. J.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at –20°C. Energy Environ. Sci. 2019, 12, 706–715.
Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629.
Sun, L. J.; Chen, S.; Guo, Y. F.; Song, J. C.; Zhang, L. Z.; Xiao, L. J.; Guan, Q. B.; You, Z. W. Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 2019, 63, 103847.
Ge, G.; Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020, 14, 218–228.
Bai, Y. K.; Zhang, J. W.; Wen, D. D.; Yuan, B.; Gong, P. W.; Liu, J. M.; Chen, X. Fabrication of remote controllable devices with multistage responsiveness based on a NIR light-induced shape memory ionomer containing various bridge ions. J. Mater. Chem. A 2019, 7, 20723–20732.
Zhang, L. M.; He, Y.; Cheng, S. B.; Sheng, H.; Dai, K. R.; Zheng, W. J.; Wang, M. X.; Chen, Z. S.; Chen, Y. M.; Suo, Z. G. Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small 2019, 15, 1804651.
Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 2017, 29, 1605099.
Tiwari, N.; Ho, F.; Ankit; Mathews, N. A rapid low temperature self-healable polymeric composite for flexible electronic devices. J. Mater. Chem. A 2018, 6, 21428–21434.
Liu, Y. Q.; Sun, N.; Liu, J. W.; Wen, Z.; Sun, X. H.; Lee, S. T.; Sun, B. Q. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 2018, 12, 2893–2899.
Wen, X. N.; Su, Y. J.; Yang, Y.; Zhang, H. L.; Wang, Z. L. Applicability of triboelectric generator over a wide range of temperature. Nano Energy 2014, 4, 150–156.
Guan, Q. B.; Dai, Y. H.; Yang, Y. Q.; Bi, X. Y.; Wen, Z.; Pan, Y. Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy 2018, 51, 333–339.
Zhao, G. R.; Zhang, Y. W.; Shi, N.; Liu, Z. R.; Zhang, X. D.; Wu, M. Q.; Pan, C. F.; Liu, H. L.; Li, L. L.; Wang, Z. L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310.
Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect–based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.
Guo, Y. F.; Chen, S.; Sun, L. J.; Yang, L.; Zhang, L. Z.; Lou, J. M.; You, Z. W. Degradable and fully recyclable dynamic thermoset elastomer for 3D-printed wearable electronics. Adv. Funct. Mater. 2021, 31, 2009799.