Graphical Abstract

Oxygen evolution reaction (OER) is the key step involved both in water splitting devices and rechargeable metal-air batteries, and hence, there is an urgent need for a stable and low-cost material for efficient OER. In the present investigation, Co-Fe-Ga-Ni-Zn (CFGNZ) high entropy alloy (HEA) has been utilized as a low-cost electrocatalyst for OER. Herein, after cyclic voltammetry activation, CFGNZ-nanoparticles (NPs) are covered with oxidized surface and form high entropy (oxy) hydroxides (HEOs), exhibiting a low overpotential of 370 mV to achieve a current density of 10 mA/cm2 with a small Tafel slope of 71 mV/dec. CFGNZ alloy has higher electrochemical stability in comparison to state-of-the art RuO2 electrocatalyst as no degradation has been observed up to 10 h of chronoamperometry. Transmission electron microscopy (TEM) studies after 10 h of long-term chronoamperometry test showed no change in the crystal structure, which confirmed the high stability of CFGNZ. The density functional theory (DFT) based calculations show that the closeness of d(p)-band centers to the Fermi level (EF) plays a major role in determining active sites.This work highlights the tremendous potential of CFGNZ HEA for OER, which is the primary reaction involved in water splitting.
Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.
McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.
Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.
Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.
Kumar Katiyar, N.; Biswas, K.; Yeh, J. W.; Sharma, S.; Sekhar Tiwary, C. A perspective on the catalysis using the high entropy alloys. Nano Energy 2021, 88, 106261.
Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782–823.
Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 2020, 10, 3658–3663.
Katiyar, N. K.; Nellaiappan, S.; Kumar, R.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst. Mater. Today Energy 2020, 16, 100393.
Kumar, N.; Tiwary, C. S.; Biswas, K. Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. J. Mater. Sci. 2018, 53, 13411–13423.
Qiu, H. J.; Fang, G.; Gao, J. J.; Wen, Y. R.; Lv, J.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 2019, 1, 526–533.
Ding, Z. Y.; Bian, J. J.; Shuang, S.; Liu, X. D.; Hu, Y. C.; Sun, C. W.; Yang, Y. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv. Sustain. Syst. 2020, 4, 1900105.
Nandan, R.; Rekha, M. Y.; Devi, H. R.; Srivastava, C.; Nanda, K. K. High-entropy alloys for water oxidation: A new class of electrocatalysts to look out for. Chem. Commun. 2021, 57, 611–614.
Kumar, N.; Biswas, K. Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles. Rev. Sci. Instrum. 2015, 86, 083903.
Katiyar, N. K.; Biswas, K.; Tiwary, C. S.; Machado, L. D.; Gupta, R. K. Stabilization of a highly concentrated colloidal suspension of pristine metallic nanoparticles. Langmuir 2019, 35, 2668–2673.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Zunger, A.; Wei, S. H.; Ferreira, L. G.; Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 1990, 65, 353–356.
Urs, K. M. B.; Katiyar, N. K.; Kumar, R.; Biswas, K.; Singh, A. K.; Tiwary, C. S.; Kamble, V. Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing. Nanoscale 2020, 12, 11830–11841.
Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779.
Fujii, T.; De Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 1999, 59, 3195–3202.
Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 113, 855–861.
Carli, R.; Bianchi, C. L. XPS analysis of gallium oxides. Appl. Surf. Sci. 1994, 74, 99–102.
Petitmangin, A.; Gallas, B.; Hebert, C.; Perrière, J.; Binet, L.; Barboux, P.; Portier, X. Characterization of oxygen deficient gallium oxide films grown by PLD. Appl. Surf. Sci. 2013, 278, 153–157.
Du, X. F.; Zhao, H. L.; Lu, Y.; Zhang, Z. J.; Kulka, A.; Świerczek, K. Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. Electrochim. Acta 2017, 228, 100–106.
Dai, W. J.; Lu, T.; Pan, Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power Sources 2019, 430, 104–111.
Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.
Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Nandan, R.; Devi, H. R.; Kumar, R.; Singh, A. K.; Srivastava, C.; Nanda, K. K. Inner sphere electron transfer promotion on homogeneously dispersed Fe-Nx centers for energy-efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 2020, 12, 36026–36039.
Kumar, R.; Das, D.; Singh, A. K. C2N/WS2 van der Waals type-II heterostructure as a promising water splitting photocatalyst. J. Catal. 2018, 359, 143–150.
Kumar, R.; Singh, A. K. Electronic structure based intuitive design principle of single-atom catalysts for efficient electrolytic nitrogen reduction. ChemCatChem 2020, 12, 5456–5464.
Bockris, J. O. M.; Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. 1984, 131, 290–302.
Sun, W.; Song, Y.; Gong, X. Q.; Cao, L. M.; Yang, J. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity. Chem. Sci. 2015, 6, 4993–4999.
Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 1986, 14, 397–426.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.