Journal Home > Volume 15 , Issue 6

High entropy metallic glass nanoparticles (HEMG NPs) are very promising materials for energy conversion due to the wide tuning possibilities of electrochemical potentials offered by their multimetallic character combined with an amorphous structure. Up until now, the generation of these HEMG NPs involved tedious synthesis procedures where the generated particles were only available on highly specialized supports, which limited their widespread use. Hence, more flexible synthetic approaches to obtain colloidal HEMG NPs for applications in energy conversion and storage are highly desirable. We utilized pulsed laser ablation of bulk high entropy alloy targets in acetonitrile to generate colloidal carbon-coated CrCoFeNiMn and CrCoFeNiMnMo HEMG NPs. An in-depth analysis of the structure and elemental distribution of the obtained nanoparticles down to single-particle levels using advanced transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) methods revealed amorphous quinary and senary alloy phases with slight manganese oxide/hydroxide surface segregation, which were stabilized within graphitic shells. Studies on the catalytic activity of the corresponding carbon-HEMG NPs during oxygen evolution and oxygen reduction reactions revealed an elevated activity upon the incorporation of moderate amounts of Mo into the amorphous alloy, probably due to the defect generation by atomic size mismatch. Furthermore, we demonstrate the superiority of these carbon-HEMG NPs over their crystalline analogies and highlight the suitability of these amorphous multi-elemental NPs in electrocatalytic energy conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts

Show Author's information Jacob Johny1Yao Li1Marius Kamp2Oleg Prymak3Shun-Xing Liang1Tobias Krekeler4Martin Ritter4Lorenz Kienle2Christoph Rehbock1Stephan Barcikowski1( )Sven Reichenberger1
Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45141, Germany
Institute for Materials Science, Synthesis and Real Structure, Kiel University, Kiel 24143, Germany
Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45141, Germany
Electron Microscopy Unit, Hamburg University of Technology, Hamburg 21073, Germany

Abstract

High entropy metallic glass nanoparticles (HEMG NPs) are very promising materials for energy conversion due to the wide tuning possibilities of electrochemical potentials offered by their multimetallic character combined with an amorphous structure. Up until now, the generation of these HEMG NPs involved tedious synthesis procedures where the generated particles were only available on highly specialized supports, which limited their widespread use. Hence, more flexible synthetic approaches to obtain colloidal HEMG NPs for applications in energy conversion and storage are highly desirable. We utilized pulsed laser ablation of bulk high entropy alloy targets in acetonitrile to generate colloidal carbon-coated CrCoFeNiMn and CrCoFeNiMnMo HEMG NPs. An in-depth analysis of the structure and elemental distribution of the obtained nanoparticles down to single-particle levels using advanced transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) methods revealed amorphous quinary and senary alloy phases with slight manganese oxide/hydroxide surface segregation, which were stabilized within graphitic shells. Studies on the catalytic activity of the corresponding carbon-HEMG NPs during oxygen evolution and oxygen reduction reactions revealed an elevated activity upon the incorporation of moderate amounts of Mo into the amorphous alloy, probably due to the defect generation by atomic size mismatch. Furthermore, we demonstrate the superiority of these carbon-HEMG NPs over their crystalline analogies and highlight the suitability of these amorphous multi-elemental NPs in electrocatalytic energy conversion.

Keywords: oxygen reduction reaction, catalysis, oxygen evolution reaction, amorphous, high entropy alloy, pulsed laser ablation in liquid

References(108)

1

Lei, Z. F.; Liu, X. J.; Wu, Y.; Wang, H.; Jiang, S. H.; Wang, S. D.; Hui, X. D.; Wu, Y. D.; Gault, B.; Kontis, P. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550.

2

Löffler, T.; Meyer, H.; Savan, A.; Wilde, P.; Manjón, A. G.; Chen, Y. T.; Ventosa, E.; Scheu, C.; Ludwig, A.; Schuhmann, W. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 2018, 8, 1802269.

3

Chen, P. C.; Liu, M. H.; Du, J. S.; Meckes, B.; Wang, S. Z.; Lin, H X.; Dravid, V. P.; Wolverton, C.; Mirkin, C. A. Interface and heterostructure design in polyelemental nanoparticles. Science 2019, 363, 959–964.

4

Koo, W. T.; Millstone, J. E.; Weiss, P. S.; Kim, I. D. The design and science of polyelemental nanoparticles. ACS Nano 2020, 14, 6407–6413.

5

Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Q. Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565–1569.

6

Chen, P. C.; Liu, G. L.; Zhou, Y.; Brown, K. A.; Chernyak, N.; Hedrick, J. L.; He, S.; Xie, Z.; Lin, Q. Y.; Dravid, V. P. et al. Tip-directed synthesis of multimetallic nanoparticles. J. Am. Chem. Soc. 2015, 137, 9167–9173.

7

Kwon, S. G.; Krylova, G.; Phillips, P. J.; Klie, R. F.; Chattopadhyay, S.; Shibata, T.; Bunel, E. E.; Liu, Y. Z.; Prakapenka, V. B.; Lee, B. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 2015, 14, 215–223.

8

Singh, M. P.; Srivastava, C. Synthesis and electron microscopy of high entropy alloy nanoparticles. Mater. Lett. 2015, 160, 419–422.

9

Yang, Y.; Song, B. A.; Ke, X.; Xu, F. Y.; Bozhilov, K. N.; Hu, L. B.; Shahbazian-Yassar, R.; Zachariah, M. R. Aerosol synthesis of high entropy alloy nanoparticles. Langmuir 2020, 36, 1985–1992.

10

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

11

George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

12

Xin, Y.; Li, S. H.; Qian, Y. Y.; Zhu, W. K.; Yuan, H. B.; Jiang, P. Y.; Guo, R. H.; Wang, L. B. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities. ACS Catal. 2020, 10, 11280–11306.

13

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

14

Pickering, E. J.; Jones, N. G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 2016, 61, 183–202.

15

Buck, M. R.; Bondi, J. F.; Schaak, R. E. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 2012, 4, 37–44.

16

Lacey, S. D.; Dong, Q.; Huang, Z. N.; Luo, J. R.; Xie, H.; Lin, Z. W.; Kirsch, D. J.; Vattipalli, V.; Povinelli, C.; Fan, W. et al. Stable multimetallic nanoparticles for oxygen electrocatalysis. Nano Lett. 2019, 19, 5149–5158.

17

Wang, X. Z.; Dong, Q.; Qiao, H. Y.; Huang, Z. N.; Saray, M. T.; Zhong, G.; Lin, Z. W.; Cui, M. J.; Brozena, A.; Hong, M. et al. Continuous synthesis of hollow high-entropy nanoparticles for energy and catalysis applications. Adv. Mater. 2020, 32, 2002853.

18

Wu, J. X.; Tang, A. W.; Huang, S. P.; Li, J. M.; Zeng, L. X.; Wei, M. D. In situ confined Co5Ge3 alloy nanoparticles in nitrogen-doped carbon nanotubes for boosting lithium storage. ACS Appl. Mater. Interfaces 2020, 12, 46247–46253.

19

Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782–823.

20

Fang, G.; Gao, J. J.; Lv, J.; Jia, H. L.; Li, H. L.; Liu, W. H.; Xie, G. Q.; Chen, Z. H.; Huang, Y.; Yuan, Q. H. et al. Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2020, 268, 118431.

21

Jin, Z. Y.; Lv, J.; Jia, H. L.; Liu, W. H.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Sun, S. H. et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019, 15, 1904180.

22

Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10, 3115.

23

Dai, W. J.; Lu, T.; Pan, Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power Sources 2019, 430, 104–111.

24

Qiu, H. J.; Fang, G.; Gao, J. J.; Wen, Y. R.; Lv, J.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 2019, 1, 526–533.

25

Li, S. Y.; Tang, X. W.; Jia, H. L.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Lin, X.; Qiu, H. J. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J. Catal. 2020, 383, 164–171.

26

Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

27

Tsai, C. F.; Wu, P. W.; Lin, P.; Chao, C. G.; Yeh, K. Y. Sputter deposition of multi-element nanoparticles as electrocatalysts for methanol oxidation. Jpn. J. Appl. Phys. 2008, 47, 5755–5761.

28

Yusenko, K. V.; Riva, S.; Carvalho, P. A.; Yusenko, M. V.; Arnaboldi, S.; Sukhikh, A. S.; Hanfland, M.; Gromilov, S. A. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 2017, 138, 22–27.

29

Wang, A. L.; Wan, H. C.; Xu, H.; Tong, Y. X.; Li, G. R. Quinary PdNiCoCuFe alloy nanotube arrays as efficient electrocatalysts for methanol oxidation. Electrochim. Acta 2014, 127, 448–453.

30

Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Deo Malviya, K.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 2020, 10, 3658–3663.

31

Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

32

Gao, S. J.; Hao, S. Y.; Huang, Z. N.; Yuan, Y. F.; Han, S.; Lei, L. C.; Zhang, X. W.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 2020, 11, 2016.

33

Zhang, G. L.; Ming, K. S.; Kang, J. L.; Huang, Q.; Zhang, Z. J.; Zheng, X. R.; Bi, X. F. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 279, 19–23.

34

Löffler, T.; Savan, A.; Meyer, H.; Meischein, M.; Strotkötter, V.; Ludwig, A.; Schuhmann, W. Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angew. Chem., Int. Ed. 2020, 59, 5844–5850.

35

Löffler, T.; Waag, F.; Gökce, B.; Ludwig, A.; Barcikowski, S.; Schuhmann, W. Comparing the activity of complex solid solution electrocatalysts using inflection points of voltammetric activity curves as activity descriptors. ACS Catal. 2021, 11, 1014–1023.

36

Li, R.; Liu, X. J.; Wu, R. Y.; Wang, J.; Li, Z. B.; Chan, K. C.; Wang, H.; Wu, Y.; Lu, Z. P. Flexible honeycombed nanoporous/glassy hybrid for efficient electrocatalytic hydrogen generation. Adv. Mater. 2019, 31, 1904989.

37

Wang, H. Y.; Wei, R.; Li, X. M.; Ma, X. L.; Hao, X. G.; Guan, G. Q. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: An efficient electrocatalyst for oxygen evolution reaction. J. Mater. Sci. Technol. 2021, 68, 191–198.

38

Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys. Chem. Soc. Rev. 2012, 41, 8140–8162.

39

Ye, J. C.; Lu, J.; Liu, C. T.; Wang, Q.; Yang, Y. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 2010, 9, 619–623.

40

Wang, W. H. High-entropy metallic glasses. JOM 2014, 66, 2067–2077.

41

Zou, Y.; Wheeler, J. M.; Ma, H.; Okle, P.; Spolenak, R. Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 2017, 17, 1569–1574.

42

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

43

Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 2020, 142, 13833–13838.

44

Zhang, D. S.; Gökce, B.; Barcikowski, S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017, 117, 3990–4103.

45

Amendola, V.; Amans, D.; Ishikawa, Y.; Koshizaki, N.; Scirè, S.; Compagnini, G.; Reichenberger, S.; Barcikowski, S. Frontispiece: Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem.—Eur. J. 2020, 26, 9206–9242.

46

Reichenberger, S.; Marzun, G.; Muhler, M.; Barcikowski, S. Perspective of surfactant-free colloidal nanoparticles in heterogeneous catalysis. ChemCatChem 2019, 11, 4489–4518.

47

Neumeister, A.; Jakobi, J.; Rehbock, C.; Moysig, J.; Barcikowski, S. Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser ablation of bulk alloy and consolidated microparticles in water. Phys. Chem. Chem. Phys. 2014, 16, 23671–23678.

48

Johny, J.; Kamp, M.; Prymak, O.; Tymoczko, A.; Wiedwald, U.; Rehbock, C.; Schürmann, U.; Popescu, R.; Gerthsen, D.; Kienle, L. et al. Formation of Co–Au core–shell nanoparticles with thin gold shells and soft magnetic ε-cobalt cores ruled by thermodynamics and kinetics. J. Phys. Chem. C 2021, 125, 9534–9549.

49

Tymoczko, A.; Kamp, M.; Rehbock, C.; Kienle, L.; Cattaruzza, E.; Barcikowski, S.; Amendola, V. One-step synthesis of Fe–Au core–shell magnetic-plasmonic nanoparticles driven by interface energy minimization. Nanoscale Horiz. 2019, 4, 1326–1332.

50

Shih, C. Y.; Chen, C. B.; Rehbock, C.; Tymoczko, A.; Wiedwald, U.; Kamp, M.; Schuermann, U.; Kienle, L.; Barcikowski, S.; Zhigilei, L. V. Limited elemental mixing in nanoparticles generated by ultrashort pulse laser ablation of AgCu bilayer thin films in a liquid environment: Atomistic modeling and experiments. J. Phys. Chem. C 2021, 125, 2132–2155.

51

Lin, Z.; Yue, J.; Liang, L.; Tang, B.; Liu, B.; Ren, L.; Li, Y.; Jiang, L. L. Rapid synthesis of metallic and alloy micro/nanoparticles by laser ablation towards water. Appl. Surf. Sci. 2020, 504, 144461.

52

Waag, F.; Li, Y.; Ziefuß, A. R.; Bertin, E.; Kamp, M.; Duppel, V.; Marzun, G.; Kienle, L.; Barcikowski, S.; Gökce, B. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019, 9, 18547–18558.

53

Shih, C. Y.; Streubel, R.; Heberle, J.; Letzel, A.; Shugaev, M. V.; Wu, C. P.; Schmidt, M.; Gökce, B.; Barcikowski, S.; Zhigilei, L. V. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: The origin of the bimodal size distribution. Nanoscale 2018, 10, 6900–6910.

54

Shih, C. Y.; Shugaev, M. V.; Wu, C. P.; Zhigilei, L. V. The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: Insights from large-scale atomistic simulations. Phys. Chem. Chem. Phys. 2020, 22, 7077–7099.

55

Song, X.; Xiao, K. L.; Wu, X. Q.; Wilde, G.; Jiang, M. Q. Nanoparticles produced by nanosecond pulse laser ablation of a metallic glass in water. J. Non-Cryst. Solids 2019, 517, 119–126.

56

Kwong, H. Y.; Wong, M. H.; Leung, C. W.; Wong, Y. W.; Wong, K. H. Formation of core/shell structured cobalt/carbon nanoparticles by pulsed laser ablation in toluene. J. Appl. Phys. 2010, 108, 034304.

57

Liang, S. X.; Zhang, L. C.; Reichenberger, S.; Barcikowski, S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys. Chem. Chem. Phys. 2021, 23, 11121–11154.

58

Sun, X. C.; Wang, J. Q.; Yin, Y. H.; Wang, H. B.; Li, S.; Liu, H.; Mao, J.; Du, X. W. Laser-ablation-produced cobalt nickel phosphate with high-valence nickel ions as an active catalyst for the oxygen evolution reaction. Chem.—Eur. J. 2020, 26, 2793–2797.

59

Schade, O. R.; Stein, F.; Reichenberger, S.; Gaur, A.; Saraҫi, E.; Barcikowski, S.; Grunwaldt, J. D. Selective aerobic oxidation of 5-(hydroxymethyl)furfural over heterogeneous silver-gold nanoparticle catalysts. Adv. Synth. Catal. 2020, 362, 5681–5696.

60

Shih, C. Y.; Wu, C. P.; Shugaev, M. V.; Zhigilei, L. V. Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water. J. Colloid Interface Sci. 2017, 489, 3–17.

61

Nobbmann, U.; Morfesis, A. Light scattering and nanoparticles. Mater. Today 2009, 12, 52–54.

62
Barcikowski, S.; Amendola, V.; Lau, M.; Marzun, G.; Rehbock, C.; Reichenberger, S.; Zhang, D. S.; Gökce, B. Handbook of Laser Synthesis & Processing of Colloids, 2nd ed.; DuEPublico 2: Essen, Germany, 2019. https://duepublico2.uni-due.de/receive/duepublico_mods_00070584(accessed May 31, 2021).
63

Rane, S. S.; Choi, P. Polydispersity index: How accurately does it measure the breadth of the molecular weight distribution? Chem. Mater. 2005, 17, 926.

64

Ziefuß, A. R.; Reichenberger, S.; Rehbock, C.; Chakraborty, I.; Gharib, M.; Parak, W. J.; Barcikowski, S. Laser fragmentation of colloidal gold nanoparticles with high-intensity nanosecond pulses is driven by a single-step fragmentation mechanism with a defined educt particle-size threshold. J. Phys. Chem. C 2018, 122, 22125–22136.

65

Dittrich, S.; Barcikowski, S.; Gökce, B. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease. Opto-Electron. Adv. 2021, 4, 200072.

66

Haxhiaj, I.; Tigges, S.; Firla, D.; Zhang, X. R.; Hagemann, U.; Kondo, T.; Nakamura, J.; Marzun, G.; Barcikowski, S. Platinum nanoparticles supported on reduced graphene oxide prepared in situ by a continuous one-step laser process. Appl. Surf. Sci. 2019, 469, 811–820.

67

Kohsakowski, S.; Seiser, F.; Wiederrecht, J. P.; Reichenberger, S.; Vinnay, T.; Barcikowski, S.; Marzun, G. Effective size separation of laser-generated, surfactant-free nanoparticles by continuous centrifugation. Nanotechnology 2020, 31, 095603.

68

Guadagnini, A.; Agnoli, S.; Badocco, D.; Pastore, P.; Pilot, R.; Ravelle-Chapuis, R.; van Raap, M. B. F.; Amendola, V. Kinetically stable nonequilibrium gold-cobalt alloy nanoparticles with magnetic and plasmonic properties obtained by laser ablation in liquid. ChemPhysChem 2021, 22, 657–664.

69

Nadarajah, R.; Tahir, S.; Landers, J.; Koch, D.; Semisalova, A. S.; Wiemeler, J.; El-Zoka, A.; Kim, S. H.; Utzat, D.; Möller, R. et al. Controlling the oxidation of magnetic and electrically conductive solid-solution iron-rhodium nanoparticles synthesized by laser ablation in liquids. Nanomaterials 2020, 10, 2362.

70

Marzun, G.; Bönnemann, H.; Lehmann, C.; Spliethoff, B.; Weidenthaler, C.; Barcikowski, S. Role of dissolved and molecular oxygen on Cu and PtCu alloy particle structure during laser ablation synthesis in liquids. ChemPhysChem 2017, 18, 1175–1184.

71

Ding, Z. Y.; Bian, J. J.; Shuang, S.; Liu, X. D.; Hu, Y. C.; Sun, C. W.; Yang, Y. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv. Sustain. Syst. 2020, 4, 1900105.

72

Jung, H. J.; Choi, M. Y. One-pot synthesis of graphitic and nitrogen-doped graphitic layers on nickel nanoparticles produced by pulsed laser ablation in liquid: Solvent as the carbon and nitrogen source. Appl. Surf. Sci. 2018, 457, 1050–1056.

73

Lin, J. Y.; Xi, C.; Li, Z.; Feng, Y.; Wu, D. Y.; Dong, C. K.; Yao, P.; Liu, H.; Du, X. W. Lattice-strained palladium nanoparticles as active catalysts for the oxygen reduction reaction. Chem. Commun. 2019, 55, 3121–3123.

74

Zhang, D. S.; Zhang, C.; Liu, J.; Chen, Q.; Zhu, X. G.; Liang, C. H. Carbon-encapsulated metal/metal carbide/metal oxide core–shell nanostructures generated by laser ablation of metals in organic solvents. ACS Appl. Nano Mater. 2019, 2, 28–39.

75

Trucano, P.; Chen, R. Structure of graphite by neutron diffraction. Nature 1975, 258, 136–137.

76

Kim, Y. J.; Ma, R.; Reddy, D. A.; Kim, T. K. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline. Appl. Surf. Sci. 2015, 357, 2112–2120.

77

Lee, S. H.; Jung, H. J.; Lee, S. J.; Theerthagiri, J.; Kim, T. H.; Choi, M. Y. Selective synthesis of Au and graphitic carbon-encapsulated Au (Au@GC) nanoparticles by pulsed laser ablation in solvents: Catalytic Au and acid-resistant Au@GC nanoparticles. Appl. Surf. Sci. 2020, 506, 145006.

78

Abdullaeva, Z.; Omurzak, E.; Iwamoto, C.; Ganapathy, H. S.; Sulaimankulova, S.; Liliang, C.; Mashimo, T. Onion-like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in a liquid. Carbon 2012, 50, 1776–1785.

79

Liu, X. G.; Ou, Z. Q.; Geng, D. Y.; Han, Z.; Jiang, J. J.; Liu, W.; Zhang, Z. D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon 2010, 48, 891–897.

80

Zhang, H. M.; Liu, J.; Tian, Z. F.; Ye, Y. X.; Cai, Y. Y.; Liang, C. H.; Terabe, K. A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode. Carbon 2016, 100, 590–599.

81

Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306.

82

Zhang, L. C.; Jia, Z.; Lyu, F. C.; Liang, S. X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576.

83

Sun, J.; Sinha, S. K.; Khammari, A.; Picher, M.; Terrones, M.; Banhart, F. The amorphization of metal nanoparticles in graphitic shells under laser pulses. Carbon 2020, 161, 495–501.

84

Guo, S.; Liu, C. T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Natl. Sci.: Mater. Int. 2011, 21, 433–446.

85

Kanitz, A.; Hoppius, J. S.; del Mar Sanz, M.; Maicas, M.; Ostendorf, A.; Gurevich, E. L. Synthesis of magnetic nanoparticles by ultrashort pulsed laser ablation of iron in different liquids. ChemPhysChem 2017, 18, 1155–1164.

86

Mookerjee, A.; Saha-Dasgupta, T.; Dasgupta, I.; Arya, A.; Banerjee, S.; Das, G. P. A first-principles thermodynamic approach to ordering in binary alloys. Bull. Mater. Sci. 2003, 26, 79–89.

87

Guillermet, A. F. The Fe–Mo (iron–molybdenum) system. Bull. Alloy Phase Diagrams 1982, 3, 359–367.

88

Cai, W. Z.; Chen, R.; Yang, H. B.; Tao, H. B.; Wang, H. Y.; Gao, J. J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. Nano Lett. 2020, 20, 4278–4285.

89

Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeißer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.

90

Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J. et al. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 2017, 29, 1606570.

91

Laplanche, G.; Volkert, U. F.; Eggeler, G.; George, E. P. Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid. Met. 2016, 85, 629–645.

92

Douglass, D. L.; Gesmundo, F.; de Asmundis, C. The air oxidation of an austenitic Fe-Mn-Cr stainless steel for fusion-reactor applications. Oxid. Met. 1986, 25, 235–268.

93

Douglass, D. L.; Rizzo-Assuncao, F. The oxidation of Fe-19.6Cr-15.1Mn stainless steel. Oxid. Met. 1988, 29, 271–287.

94

Tomboc, G. M.; Kwon, T.; Joo, J.; Lee, K. High entropy alloy electrocatalysts: A critical assessment of fabrication and performance. J. Mater. Chem. A 2020, 8, 14844–14862.

95

Pauling, L. Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 1947, 69, 542–553.

96

Lv, Z. Y.; Liu, X. J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z. P. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci. Rep. 2016, 6, 34213.

97

Vassalini, I.; Borgese, L.; Mariz, M.; Polizzi, S.; Aquilanti, G.; Ghigna, P.; Sartorel, A.; Amendola, V.; Alessandri, I. Enhanced electrocatalytic oxygen evolution in Au–Fe nanoalloys. Angew. Chem., Int. Ed. 2017, 56, 6589–6593.

98

Marzun, G.; Levish, A.; Mackert, V.; Kallio, T.; Barcikowski, S.; Wagener, P. Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis. J. Colloid Interface Sci. 2017, 489, 57–67.

99

Basu, M. In-situ developed carbon spheres function as promising support for enhanced activity of cobalt oxide in oxygen evolution reaction. J. Colloid Interface Sci. 2018, 530, 264–273.

100

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

101

Hu, S.; Goenaga, G.; Melton, C.; Zawodzinski, T. A.; Mukherjee, D. PtCo/CoOx nanocomposites: Bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Appl. Catal. B: Environ. 2016, 182, 286–296.

102

Brandiele, R.; Amendola, V.; Guadagnini, A.; Rizzi, G. A.; Badocco, D.; Pastore, P.; Isse, A. A.; Durante, C.; Gennaro, A. Facile synthesis of Pd3Y alloy nanoparticles for electrocatalysis of the oxygen reduction reaction. Electrochim. Acta 2019, 320, 134563.

103

Filimonenkov, I. S.; Bouillet, C.; Kéranguéven, G.; Simonov, P. A.; Tsirlina, G. A.; Savinova, E. R. Carbon materials as additives to the OER catalysts: RRDE study of carbon corrosion at high anodic potentials. Electrochim. Acta 2019, 321, 134657.

104

Yang, J. C.; Park, S.; Choi, K. Y.; Park, H. S.; Cho, Y. G.; Ko, H.; Song, H. K. Activity-durability coincidence of oxygen evolution reaction in the presence of carbon corrosion: Case study of MnCo2O4 spinel with carbon black. ACS Sustainable Chem. Eng. 2018, 6, 9566–9571.

105

Park, H.; Schleker, P. P. M.; Liu, Z. G.; Kowalew, N.; Stamm, T.; Schlögl, R.; Eichel, R. A.; Heumann, S.; Granwehr, J. Insights into water interaction at the interface of nitrogen-functionalized hydrothermal carbons. J. Phys. Chem. C 2019, 123, 25146–25156.

106
Johny, J.; Prymak, O.; Kamp, M.; Calvo, F.; Kim, S. H.; Tymoczko, A.; El-Zoka, A.; Rehbock, C.; Schürmann, U.; Gault, B. et al. Multidimensional thermally-induced transformation of nest-structured complex Au-Fe nanoalloys towards equilibrium.Nano Res., in press, DOI: 10.1007/s12274-021-3524-7.https://doi.org/10.1007/s12274-021-3524-7
DOI
107

Zhang, D. S.; Liu, J.; Li, P. F.; Tian, Z. F.; Liang, C. H. Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids. ChemNanoMat 2017, 3, 512–533.

108

Bai, L.; Duan, Z. Y.; Wen, X. D.; Si, R.; Guan, J. Q. Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Appl. Catal. B: Environ. 2019, 257, 117930.

File
12274_2021_3804_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 31 May 2021
Revised: 30 July 2021
Accepted: 10 August 2021
Published: 31 August 2021
Issue date: June 2022

Copyright

© The Author(s) 2021

Acknowledgements

S.-X. L. is grateful for the financial support from Alexander von Humboldt Foundation Research Fellowship for postdoctoral researchers. The authors thank Friedrich Waag for fruitful discussions and for providing some of the HEA ablation targets. Jurij Jakobi is acknowledged for the XRF measurements.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return