Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Magnetron co-sputtering synthesis and nanoindentation studies of nanocrystalline (TiZrHf)x(NbTa)1–x high-entropy alloy thin films

Changjun Cheng1Xiaofu Zhang2Michel J. R. Haché1Yu Zou1()
Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology and Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences (CAS), Shanghai 200050, China
Show Author Information

Graphical Abstract

View original image Download original image
Using the nanoindentation method, we determine the relationshipbetween composition and mechanical properties for the body-centeredcubic nanocrystalline (TiZrHf)x(NbTa)1−xhigh-entropy alloy (HEA) thinfilms within a wide composition range (x = 0.07–0.90). The uniqueconcave trend of nanohardness results from the cooperationbetweensolid solution strengthening and the aggregation of the oriented grain,i.e., texture.

Abstract

Refractory high-entropy alloys (HEAs) possess many useful properties such as high strength and high-temperature stability. So far, most studies on refractory HEAs have been limited to a few well-known compositions and on their coarse-grain bulk forms. Here we fabricate nanocrystalline (TiZrHf)x(NbTa)1−x HEA thin films with a large range of compositions (x = 0.07–0.90) by the direct current (DC) magnetron co-sputtering technique and measure their mechanical properties using the nanoindentation method. All the as-deposited HEA thin films show a solid-solution body-centered cubic (bcc) structure. As the compositional ratio (x) increases, the elastic modulus decreases from 153 to 123 GPa, following the trend of the rule of mixture. As x increases, the hardness first decreases from 6.5 GPa (x = 0.07) to the lowest value (4.6 GPa, x = 0.48) and then increases to the highest value (7.1 GPa, x = 0.90), showing a concave trend. The change in hardness might be attributed to the combinational influence caused by the atomic size and modulus effects, as well as the texture effect. The authors also propose a few open questions for future studies on this and related HEA systems.

Electronic Supplementary Material

Download File(s)
12274_2021_3805_MOESM1_ESM.pdf (792.7 KB)

References

1

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

2

Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng.: A 2004, 375-377, 213–218.

3

Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.

4

Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362.

5

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

6

Gao, M. C.; Miracle, D. B.; Maurice, D.; Yan, X. H.; Zhang, Y.; Hawk, J. A. High-entropy functional materials. J. Mater. Res. 2018, 33, 3138–3155.

7

Haché, M. J. R.; Cheng, C. J.; Zou, Y. Nanostructured high-entropy materials. J. Mater. Res. 2020, 35, 1051–1075.

8

Wu, Z.; Bei, H.; Pharr, G. M.; George, E. P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014, 81, 428–441.

9

Senkov, O. N.; Wilks, G. B.; Miracle, D. B.; Chuang, C. P.; Liaw, P. K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765.

10

Sheikh, S.; Shafeie, S.; Hu, Q.; Ahlström, J.; Persson, C.; Veselý, J.; Zýka, J.; Klement, U.; Guo, S. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 2016, 120, 164902.

11

Feng, X. B.; Zhang, J. Y.; Xia, Z. R.; Fu, W.; Wu, K.; Liu, G.; Sun, J. Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties. Mater. Lett. 2018, 210, 84–87.

12

Senkov, O. N.; Wilks, G. B.; Scott, J. M.; Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706.

13

Zou, Y.; Wheeler, J. M.; Ma, H.; Okle, P.; Spolenak, R. Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 2017, 17, 1569–1574.

14

Zou, Y.; Maiti, S.; Steurer, W.; Spolenak, R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 2014, 65, 85–97.

15

Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 7748.

16

Senkov, O. N.; Scott, J. M.; Senkova, S. V.; Miracle, D. B.; Woodward, C. F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 2011, 509, 6043–6048.

17

Tseng, K. K.; Juan, C. C.; Tso, S.; Chen, H. C.; Tsai, C. W.; Yeh, J. W. Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys. Entropy 2019, 21, 15.

18

Hu, M. L.; Song, W. D.; Duan, D. B.; Wu, Y. Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures. Int. J. Mech. Sci. 2020, 182, 105738.

19

Wang, S. B.; Wu, D. L.; She, H.; Wu, M. X.; Shu, D.; Dong, A. P.; Lai, H. C.; Sun, B. D. Design of high-ductile medium entropy alloys for dental implants. Mater. Sci. Eng.: C 2020, 113, 110959.

20

Zhang, X. F.; Winter, N.; Witteveen, C.; Moehl, T.; Xiao, Y.; Krogh, F.; Schilling, A.; Von Rohr, F. O. Preparation and characterization of high-entropy alloy (TaNb)1−x(ZrHfTi)x superconducting films. Phys. Rev. Res. 2020, 2, 013375.

21

Von Rohr, F.; Winiarski, M. J.; Tao, J.; Klimczuk, T.; Cava, R. J. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor. Proc. Natl. Acad. Sci. USA 2016, 113, E7144–E7150.

22

Guo, J.; Wang, H. H.; Von Rohr, F.; Wang, Z.; Cai, S.; Zhou, Y. Z.; Yang, K.; Li, A. G.; Jiang, S.; Wu, Q. et al. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Natl. Acad. Sci. USA 2017, 114, 13144–13147.

23

Feng, X. B.; Surjadi, J. U.; Fan, R.; Li, X. C.; Zhou, W. Z.; Zhao, S. J.; Lu, Y. Microalloyed medium-entropy alloy (MEA) composite nanolattices with ultrahigh toughness and cyclability. Mater. Today 2021, 42, 10–16.

24

Surjadi, J. U.; Feng, X. B.; Fan, R.; Lin, W. T.; Li, X. C.; Lu, Y. Hollow medium-entropy alloy nanolattices with ultrahigh energy absorption and resilience. NPG Asia Mater. 2021, 13, 36.

25

Wang, S. P.; Ma, E.; Xu, J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution. Intermetallics 2019, 107, 15–23.

26

Yan, X. H.; Ma, J.; Zhang, Y. High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering. Sci. China Phys. Mech. Astron. 2019, 62, 996111.

27

Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633–648.

28

Oliver, W. C.; Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3.

29

Oliver, W. C.; Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583.

30

Dirras, G.; Lilensten, L.; Djemia, P.; Laurent-Brocq, M.; Tingaud, D.; Couzinié, J. P.; Perrière, L.; Chauveau, T.; Guillot, I. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater. Sci. Eng.: A 2016, 654, 30–38.

31

Saha, R.; Nix, W. D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 2002, 50, 23–38.

32
Ma, H. Microstructure engineering via ion-irradiation in metallic thin films. Ph.D. Dissertation, ETH Zurich, 2017.
33

Lin, C. M.; Juan, C. C.; Chang, C. H.; Tsai, C. W.; Yeh, J. W. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. J. Alloys Compd. 2015, 624, 100–107.

34

Jia, Y. F.; Cui, Y. Y.; Xuan, F. Z.; Yang, F. Q. Comparison between single loading-unloading indentation and continuous stiffness indentation. RSC Adv. 2017, 7, 35655–35665.

35

Takeuchi, A.; Inoue, A. Quantitative evaluation of critical cooling rate for metallic glasses. Mater. Sci. Eng.: A 2001, 304-306, 446–451.

36

Nutor, R. K.; Cao, Q. P.; Wang, X. D.; Zhang, D. X.; Fang, Y. Z.; Zhang, Y.; Jiang, J. Z. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys. Adv. Eng. Mater. 2020, 22, 2000466.

37

Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829.

38
Emsley, J. The Elements, 3rd ed.; Clarendon Press: Oxford, 1998.
39
Gale, W. F.; Totemeier, T. C. Smithells Metals Reference Book, 8th ed.; Elsevier Science: Amsterdam, 2003.
40

Levinger, B. W. Lattice parameter of beta Titanium at room temperature. JOM 1953, 5, 195.

41

Hao, Y. J.; Zhu, J.; Zhang, L.; Ren, H. S.; Qu, J. Y. Structure phase transition and elastic properties of hafnium: First-principles study. Philos. Mag. Lett. 2011, 91, 61–69.

42

Roberge, R. Lattice parameter of niobium between 4.2 and 300 K. J. Less Common Met. 1975, 40, 161–164.

43

Mueller, M. H. The lattice parameter of tantalum. Scr. Mater. 1977, 11, 693.

44

Goyal, M.; Gupta, B. R. K. Study of shape, size and temperature-dependent elastic properties of nanomaterials. Mod. Phys. Lett. B 2019, 33, 1950310.

45

Kumar, R.; Kumar, M. Size dependence of thermoelastic properties of nanomaterials. Int. J. Nanosci. 2010, 9, 537–542.

46

Sun, C. T.; Zhang, H. T. Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys. 2003, 93, 1212–1218.

47

Wang, J.; Huang, Q. A.; Yu, H. Size and temperature dependence of Young's modulus of a silicon nano-plate. J. Phys. D: Appl. Phys. 2008, 41, 165406.

48

Meng, H.; Duan, J. M.; Chen, X. T.; Jiang, S.; Shao, L.; Tang, B. Y. Influence of local lattice distortion on elastic properties of hexagonal close-packed TiZrHf and TiZrHfSc refractory alloys. Phys. Status Solidi B 2021, 258, 2100025.

49

Pharr, G. M.; Oliver, W. C. Measurement of thin film mechanical properties using nanoindentation. MRS Bull. 1992, 17, 28–33.

50

Bhushan, B.; Li, X. D. Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 1997, 12, 54–63.

51

Bolshakov, A.; Pharr, G. M. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 1998, 13, 1049–1058.

52

Sun, W. J.; Kothari, S.; Sun, C. C. The relationship among tensile strength, Young's modulus, and indentation hardness of pharmaceutical compacts. Powder Technol. 2018, 331, 1–6.

53

Wheeler, J. M. Mechanical phase mapping of the Taza meteorite using correlated high-speed nanoindentation and EDX. J. Mater. Res. 2021, 36, 94–104.

54

Yao, H. W.; Qiao, J. W.; Hawk, J. A.; Zhou, H. F.; Chen, M. W.; Gao, M. C. Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd. 2017, 696, 1139–1150.

55

Gypen, L. A.; Deruyttere, A. Multi-component solid solution hardening. J. Mater. Sci. 1977, 12, 1028–1033.

56

Toda-Caraballo, I.; Rivera-Díaz-del-Castillo, P. E. J. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015, 85, 14–23.

57

Rice, P. M.; Stoller, R. E. Correlation of nanoindentation and conventional mechanical property measurements. MRS Online Proc. Libr. 2000, 649, 711.

58

Maiti, S.; Steurer, W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 2016, 106, 87–97.

59

Vüllers, F. T. N.; Spolenak, R. From solid solutions to fully phase separated interpenetrating networks in sputter deposited “immiscible” W-Cu thin films. Acta Mater. 2015, 99, 213–227.

60

Müller, C. M.; Parviainen, S.; Djurabekova, F.; Nordlund, K.; Spolenak, R. The as-deposited structure of co-sputtered Cu-Ta alloys, studied by X-ray diffraction and molecular dynamics simulations. Acta Mater. 2015, 82, 51–63.

61

Lin, N.; Liu, S. F.; Liu, Y. H.; Fan, H. Y.; Zhu, J. L.; Deng, C.; Liu, Q. Effects of asymmetrical rolling on through-thickness microstructure and texture of body-centered cubic (BCC) tantalum. Int. J. Refract. Met. Hard Mater. 2019, 78, 51–60.

62

Chou, W. J.; Yu, G. P.; Huang, J. H. Mechanical properties of TiN thin film coatings on 304 stainless steel substrates. Surf. Coat. Technol. 2002, 149, 7–13.

63

Meng, Q. N.; Wen, M.; Qu, C. Q.; Hu, C. Q.; Zheng, W. T. Preferred orientation, phase transition and hardness for sputtered zirconium nitride films grown at different substrate biases. Surf. Coat. Technol. 2011, 205, 2865–2870.

Nano Research
Pages 4873-4879
Cite this article:
Cheng C, Zhang X, Haché MJR, et al. Magnetron co-sputtering synthesis and nanoindentation studies of nanocrystalline (TiZrHf)x(NbTa)1–x high-entropy alloy thin films. Nano Research, 2022, 15(6): 4873-4879. https://doi.org/10.1007/s12274-021-3805-1
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return