AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional Gd-CuS loaded UCST polymeric micelles for MR/PA imaging-guided chemo-photothermal tumor treatment

Yan Du1Di Liu1Mingchen Sun1Gaofeng Shu2Jing Qi1Yuchan You1Yiting Xu1Kai Fan2Xiaoling Xu1Feiyang Jin1Jun Wang1Qiying Shen1Luwen Zhu1Xiaoying Ying1Jiansong Ji2Liming Wu3( )Daren Liu4( )Yongzhong Du1( )
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Zhejiang University School of Medicine, Lishui 323000, China
Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Department of General Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
Show Author Information

Graphical Abstract

Abstract

Hepatocellular carcinoma (HCC) is a life-threatening disease for which there is no effective treatment currently. Novel theranostics simultaneously having excellent imaging and therapeutic functions are highly desired in cancer therapy. Herein, we develop the sialic acid (SA) modified polymeric micelles at an upper critical solution temperature (UCST) of 43 °C (sialic acid-poly(ethylene glycol)-poly(acrylamide-co-acrylonitrile), SA-PEG-p(AAm-co-AN)), which further encapsulated with doxorubicin (DOX) and Gd-CuS nanoparticles (Gd-CuS NPs) for chemo-photothermal treatment of HCC guided by magnetic resonance (MR)/photoacoustic (PA) dual-mode imaging. The resultant SA-PEG-p(AAm-co-AN)/DOX/Gd-CuS (SPDG) had an excellent photothermal conversion efficiency, enabling SPDG with an instantaneous release behavior of DOX under near-infrared (NIR) irradiation. This study also revealed that SPDG could actively target to HCC, which was due to that SA had a high affinity with E-selectin overexpressed at the tumor site. Moreover, benefiting from the HCC-targeted ability and NIR light-controlled on-demand delivery of DOX, SPDG showed a superior potential in MR/PA dual-mode imaging-guided chemo-photothermal treatment. Overall, our study reveals that the designed SPDG may be used as an ideal multifunctional nanoplatform for cancer theranostics.

References

1

Zhang, Y. M.; Huang, F.; Ren, C. H.; Yang, L. J.; Liu, J. F.; Cheng, Z.; Chu, L. P.; Liu, J. J. Targeted chemo-photodynamic combination platform based on the DOX prodrug nanoparticles for enhanced cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 13016–13028.

2

Wang, Y.; Wang, F. H.; Liu, Y.; Xu, S. H.; Shen, Y. Y.; Feng, N. P.; Guo, S. R. Glutathione detonated and pH responsive nano-clusters of Au nanorods with a high dose of DOX for treatment of multidrug resistant cancer. Acta Biomater. 2018, 75, 334–345.

3

Arshad, U.; Sutton, P. A.; Ashford, M. B.; Treacher, K. E.; Liptrott, N. J.; Rannard, S. P.; Goldring, C. E.; Owen, A. Critical considerations for targeting colorectal liver metastases with nanotechnology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1588.

4

Lyon, P. C.; Gray, M. D.; Mannaris, C.; Folkes, L. K.; Stratford, M.; Campo, L.; Chung, D. Y. F.; Scott, S.; Anderson, M.; Goldin, R. et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): A single-centre, open-label, phase 1 trial. Lancet Oncol. 2018, 19, 1027–1039.

5

Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Viñals, F.; Capellá, G. Recent advances in cancer therapy: An overview. Curr. Pharm. Des. 2010, 16, 3–10.

6

Shen, Q. Y.; Shen, Y. R.; Jin, F. Y.; Du, Y. Z.; Ying, X. Y. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J. Liposome Res. 2020, 30, 12–20.

7

Zhang, N. N.; Yu, R. S.; Xu, M.; Cheng, X. Y.; Chen, C. M.; Xu, X. L.; Lu, C. Y.; Lu, K. J.; Chen, M. J.; Zhu, M. L. et al. Visual targeted therapy of hepatic cancer using homing peptide modified calcium phosphate nanoparticles loading doxorubicin guided by T1 weighted MRI. Nanomed.: Nanotechnol., Biol. Med. 2018, 14, 2167–2178.

8

Janes, K. A.; Albeck, J. G.; Gaudet, S.; Sorger, P. K.; Lauffenburger, D. A.; Yaffe, M. B. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 2005, 310, 1646–1653.

9

MacEwan, S. R.; Chilkoti, A. From composition to cure: A systems engineering approach to anticancer drug carriers. Angew. Chem., Int. Ed. 2017, 56, 6712–6733.

10

Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal doxorubicin. Clin. Pharmacokinet. 2003, 42, 419–436.

11

Huebsch, N.; Kearney, C. J.; Zhao, X. H.; Kim, J.; Cezar, C. A.; Suo, Z. G.; Mooney, D. J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. USA 2014, 111, 9762–9767.

12

Zorbas, G.; Samaras, T. Simulation of radiofrequency ablation in real human anatomy. Int. J. Hyperthermia 2014, 30, 570–578.

13

Kheirolomoom, A.; Lai, C. Y.; Tam, S. M.; Mahakian, L. M.; Ingham, E. S.; Watson, K. D.; Ferrara, K. W. Complete regression of local cancer using temperature-sensitive liposomes combined with ultrasound-mediated hyperthermia. J. Control. Release 2013, 172, 266–273.

14

Sun, M. R.; Kiourti, A.; Wang, H.; Zhao, S. T.; Zhao, G.; Lu, X. B.; Volakis, J. L.; He, X. M. Enhanced microwave hyperthermia of cancer cells with fullerene. Mol. Pharm. 2016, 13, 2184–2192.

15

Chen, P. M.; Pan, W. Y.; Wu, C. Y.; Yeh, C. Y.; Korupalli, C.; Luo, P. K.; Chou, C. J.; Chia, W. T.; Sung, H. W. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination. Biomaterials 2020, 230, 119629.

16

Li, W. S.; Wang, X. J.; Zhang, S.; Hu, J. B.; Du, Y. L.; Kang, X. Q.; Xu, X. L.; Ying, X. Y.; You, J.; Du, Y. Z. Mild microwave activated, chemo-thermal combinational tumor therapy based on a targeted, thermal-sensitive and magnetic micelle. Biomaterials 2017, 131, 36–46.

17

Park, J. H.; von Maltzahn, G.; Ong, L. L.; Centrone, A.; Hatton, T. A.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv. Mater. 2010, 22, 880–885.

18

Hernández, P.; Lucero-Acuña, A.; Gutiérrez-Valenzuela, C. A.; Moreno, R.; Esquivel, R. Systematic evaluation of pH and thermoresponsive poly(n-isopropylacrylamide-chitosan-fluorescein) microgel. e-Polymers 2017, 17, 399–408.

19

Roy, D.; Brooks, W. L. A.; Sumerlin, B. S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013, 42, 7214–7243.

20

Bordat, A.; Boissenot, T.; Nicolas, J.; Tsapis, N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv. Drug Deliv. Rev. 2019, 138, 167–192.

21

Li, W. S.; Huang, L. W.; Ying, X. Y.; Jian, Y.; Hong, Y.; Hu, F. Q.; Du, Y. Z. Corrigendum: Antitumor drug delivery modulated by a polymeric micelle having upper critical solution temperature. Angew. Chem., Int. Ed. 2015, 54, 6671.

22

Hu, J. B.; Kang, X. Q.; Liang, J.; Wang, X. J.; Xu, X. L.; Yang, P.; Ying, X. Y.; Jiang, S. P.; Du, Y. Z. E-selectin-targeted sialic acid-PEG-dexamethasone micelles for enhanced anti-inflammatory efficacy for acute kidney injury. Theranostics 2017, 7, 2204–2219.

23

Xu, X. L.; Zhu, M. L.; Liu, D.; Shu, G. F.; Qi, J.; Lu, Y.; Wang, F.; Ying, X. Y.; Chen, J.; Du, Y. Z. Highly integrated nanoplatform based on an E-selectin-targeting strategy for metastatic breast cancer treatment. Mol. Pharm. 2019, 16, 3694–3702.

24

Zhao, Y.; Peng, J.; Yang, J. Y.; Zhang, E. L.; Huang, L.; Yang, H.; Kakadiaris, E.; Li, J. J.; Yan, B.; Shang, Z. Q. et al. Enhancing prostate-cancer-specific MRI by genetic amplified nanoparticle tumor homing. Adv. Mater. 2019, 31, 1900928.

25

Jennings, L. E.; Long, N. J. 'Two is better than one'––probes for dual-modality molecular imaging. Chem. Commun. 2009, 3511–3524.

26

Yang, J. M.; Favazza, C.; Chen, R. M.; Yao, J. J.; Cai, X.; Maslov, K.; Zhou, Q. F.; Shung, K. K.; Wang, L. V. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 2012, 18, 1297–1302.

27

Nie, L. M.; Chen, X. Y. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem. Soc. Rev. 2014, 43, 7132–7170.

28

Kircher, M. F.; de la Zerda, A.; Jokerst, J. V.; Zavaleta, C. L.; Kempen, P. J.; Mittra, E.; Pitter, K.; Huang, R. M.; Campos, C.; Habte, F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 2012, 18, 829–834.

29

Qin, H.; Zhou, T.; Yang, S. H.; Chen, Q.; Xing, D. Gadolinium(III)-gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine 2013, 8, 1611–1624.

30

Cheng, L.; Gong, H.; Zhu, W. W.; Liu, J. J.; Wang, X. Y.; Liu, G.; Liu, Z. PEGylated prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 2014, 35, 9844–9852.

31

Cheng, Y. Y.; Chen, Q.; Guo, Z. Y.; Li, M. W.; Yang, X. Y.; Wan, G. Y.; Chen, H. L.; Zhang, Q. Q.; Wang, Y. S. An intelligent biomimetic nanoplatform for holistic treatment of metastatic triple-negative breast cancer via photothermal ablation and immune remodeling. ACS Nano 2020, 14, 15161–15181.

32

Gu, X. J.; Qiu, Y. Y.; Lin, M.; Cui, K.; Chen, G. X.; Chen, Y. Z.; Fan, C. C.; Zhang, Y. M.; Xu, L.; Chen, H. Z. et al. CuS Nanoparticles as a photodynamic nanoswitch for abrogating bypass signaling to overcome Gefitinib resistance. Nano Lett. 2019, 19, 3344–3352.

33

Gao, W.; Sun, Y. H.; Cai, M.; Zhao, Y. J.; Cao, W. H.; Liu, Z. H.; Cui, G. W.; Tang, B. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat. Commun. 2018, 9, 231.

34

Gao, D. Y.; Sheng, Z. H.; Liu, Y. B.; Hu, D. H.; Zhang, J.; Zhang, X. J.; Zheng, H. R.; Yuan, Z. Protein-modified CuS nanotriangles: A potential multimodal nanoplatform for in vivo tumor photoacoustic/magnetic resonance dual-modal imaging. Adv. Healthc. Mater. 2017, 6, 1601094.

35

Yu, W. J.; Yu, N.; Wang, Z. J.; Li, X.; Song, C.; Jiang, R. Q.; Geng, P.; Li, M. Q.; Yin, S. W.; Chen, Z. G. Chitosan-mediated green synthesis and folic-acid modification of CuS quantum dots for photoacoustic imaging guided photothermal therapy of tumor. J. Colloid Interface Sci. 2019, 555, 480–488.

36

Yang, K.; Zhu, L.; Nie, L. M.; Sun, X. L.; Cheng, L.; Wu, C. X.; Niu, G.; Chen, X. Y.; Liu, Z. Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles. Theranostics 2014, 4, 134–141.

37

Yang, W. T.; Guo, W. S.; Le, W. J.; Lv, G. X.; Zhang, F. H.; Shi, L.; Wang, X. L.; Wang, J.; Wang, S.; Chang, J. et al. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 2016, 10, 10245–10257.

38

Zhang, C. C.; Sun, W. J.; Wang, Y.; Xu, F.; Qu, J.; Xia, J. D.; Shen, M. W.; Shi, X. Y. Gd-/CuS-loaded functional nanogels for MR/PA imaging-guided tumor-targeted photothermal therapy. ACS Appl. Mater. Interfaces 2020, 12, 9107–9117.

39

Poudel, K.; Gautam, M.; Jin, S. G.; Choi, H. G.; Yong, C. S.; Kim, J. O. Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics. Int. J. Pharm. 2019, 562, 135–150.

40

Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

41

Xu, X. L.; Lu, K. J.; Zhu, M. L.; Du, Y. L.; Zhu, Y. F.; Zhang, N. N.; Wang, X. J.; Kang, X. Q.; Xu, D. M.; Ying, X. Y. et al. Sialic acid-functionalized pH-triggered micelles for enhanced tumor tissue accumulation and active cellular internalization of orthotopic hepatocarcinoma. ACS Appl. Mater. Interfaces 2018, 10, 31903–31914.

42

Huang, Y. Z.; Lai, Y. L.; Shi, S. G.; Hao, S. F.; Wei, J. P.; Chen, X. L. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Chem. Asian J. 2015, 10, 370–376.

43

Zhang, H.; Chen, Y. D.; Cai, Y. Y.; Liu, J.; Liu, P. F.; Li, Z. Z.; An, T. T.; Yang, X. H.; Liang, C. H. Paramagnetic CuS hollow nanoflowers for T 2-FLAIR magnetic resonance imaging-guided thermochemotherapy of cancer. Biomater. Sci. 2019, 7, 409–418.

44

Mi, P.; Kokuryo, D.; Cabral, H.; Kumagai, M.; Nomoto, T.; Aoki, I.; Terada, Y.; Kishimura, A.; Nishiyama, N.; Kataoka, K. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors. J. Control. Release 2014, 174, 63–71.

Nano Research
Pages 2288-2299
Cite this article:
Du Y, Liu D, Sun M, et al. Multifunctional Gd-CuS loaded UCST polymeric micelles for MR/PA imaging-guided chemo-photothermal tumor treatment. Nano Research, 2022, 15(3): 2288-2299. https://doi.org/10.1007/s12274-021-3812-2
Topics:

867

Views

12

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 21 May 2021
Revised: 08 August 2021
Accepted: 12 August 2021
Published: 05 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return