AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A pH-responsive polymersome depleting regulatory T cells and blocking A2A receptor for cancer immunotherapy

Binfen Shao1Xuehui Huang2Funeng Xu2Jingmei Pan2Yi Wang1( )Shaobing Zhou2( )
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Show Author Information

Graphical Abstract

Abstract

The immunosuppressive tumor microenvironment (ITM) and low immunogenicity of tumors greatly limit cancer immunotherapy efficacy. The approach of solely depleting regulatory T cells (Tregs) cannot ameliorate ITM, but possibly worsen it since the produced apoptotic Tregs will activate the A2A signaling pathway and cause more severe immune suppression. To address it, in this work a pH-responsive polymersome (CY/ZM@CS-BPA) based on chondroitin sulfate (CS)-poly(β-amino ester) is rationally developed. In the acidic tumor microenvironment, the tertiary amine groups in the polymersome will reverse from hydrophobic to hydrophilic due to protonation, which leads to the disintegration of nanostructures and the release of cyclophosphamide (CY) and A2A receptor (A2AR) antagonist ZM241385 (ZM). CY can selectively deplete Tregs. Additionally, CY can induce immunogenic cell death (ICD) of tumor cells, which results in the proapoptotic translocation of calreticulin to the cell surface, further initiating the antitumor immune responses. ZM can inhibit the activation of the adenosine A2A pathway, subsequently preventing the differentiation of CD4+ T cells into Tregs and enhancing the cytotoxicity of CD8+ T cells. As a result, the combination of depleting regulatory T cells and blocking the A2A receptor can enhance cancer immunotherapy efficacy.

References

1

Phuengkham, H.; Ren, L.; Shin, I. W.; Lim, Y. T. Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy. Adv. Mater. 2019, 31, 1803322.

2

Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264.

3

Topalian, S. L.; Drake, C. G.; Pardoll, D. M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461.

4

Yousefi, H.; Yuan, J. D.; Keshavarz-Fathi, M.; Murphy, J. F.; Rezaei, N. Immunotherapy of cancers comes of age. Expert Rev. Clin. Immunol. 2017, 13, 1001–1015.

5

Feng, B.; Zhou, F. Y.; Hou, B.; Wang, D. G.; Wang, T. T.; Fu, Y. L.; Ma, Y. T.; Yu, H. J.; Li, Y. P. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater. 2018, 30, 1803001.

6

Huang, X. H.; Pan, J. M.; Xu, F. N.; Shao, B. F.; Wang, Y.; Guo, X.; Zhou, S. B. Bacteria-based cancer immunotherapy. Adv. Sci. 2021, 8, 2003572.

7

Kim, T. K.; Herbst, R. S.; Chen, L. P. Defining and understanding adaptive resistance in cancer immunotherapy. Trends Immunol. 2018, 39, 624–631.

8

Feng, B.; Niu, Z. F.; Hou, B.; Zhou, L.; Li, Y. P.; Yu, H. J. Enhancing triple negative breast cancer immunotherapy by ICG-templated self-assembly of paclitaxel nanoparticles. Adv. Funct. Mater. 2019, 30, 1906605.

9

Liu, L. Q.; Wang, Y.; Guo, X.; Zhao, J. Y.; Zhou, S. B. A biomimetic polymer magnetic nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy. Small 2020, 16, 2003543.

10

Fontenot, J. D.; Gavin, M. A.; Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003, 4, 330–336.

11

Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 2005, 6, 345–352.

12

Zou, W. P. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006, 6, 295–307.

13

Curiel, T. J.; Coukos, G.; Zou, L. H.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J. R.; Zhang, L.; Burow, M. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 2004, 10, 942–949.

14

Vasievich, E. A.; Huang, L. The suppressive tumor microenvironment: A challenge in cancer immunotherapy. Mol. Pharm. 2011, 8, 635–641.

15

Jang, J. E.; Hajdu, C. H.; Liot, C.; Miller, G.; Dustin, M. L.; Bar-Sagi, D. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep. 2017, 20, 558–571.

16

Bauer, C. A.; Kim, E. Y.; Marangoni, F.; Carrizosa, E.; Claudio, N. M.; Mempel, T. R. Dynamic treg interactions with intratumoral APCs promote local CTL dysfunction. J. Clin. Invest. 2014, 124, 2425–2440.

17

Sharma, M. D.; Baban, B.; Chandler, P.; Hou, D. Y.; Singh, N.; Yagita, H.; Azuma, M.; Blazar, B. R.; Mellor, A. L.; Munn, D. H. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest. 2007, 117, 2570–2582.

18

Josefowicz, S. Z.; Lu, L. F.; Rudensky, A. Y. Regulatory T cells: Mechanisms of differentiation and function. Annu. Rev. Immunol. 2012, 30, 531–564.

19

Zhang, L.; Zhou, J. H.; Hu, L. Z.; Han, X.; Zou, X. W.; Chen, Q.; Chen, Y. G.; Liu, Z.; Wang, C. In situ formed fibrin scaffold with cyclophosphamide to synergize with immune checkpoint blockade for inhibition of cancer recurrence after surgery. Adv. Funct. Mater. 2020, 30, 1906922.

20

Maj, T.; Wang, W.; Crespo, J.; Zhang, H. J.; Wang, W. M.; Wei, S.; Zhao, L. L.; Vatan, L.; Shao, I.; Szeliga, W. et al. Oxidative stress controls regulatory t cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 2017, 18, 1332–1341.

21

Deaglio, S.; Dwyer, K. M.; Gao, W. D.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J. F.; Enjyoji, K.; Linden, J.; Oukka, M. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007, 204, 1257–1265.

22

Vijayan, D.; Young, A.; Teng, M. W. L.; Smyth, M. J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 2017, 17, 709–724.

23

Abu Eid, R.; Razavi, G. S. E.; Mkrtichyan, M.; Janik, J.; Khleif, S. N. Old-school chemotherapy in immunotherapeutic combination in cancer, a low-cost drug repurposed. Cancer Immunol. Res. 2016, 4, 377–382.

24

Lossos, C.; Liu, Y. P.; Kolb, K. E.; Christie, A. L.; Van Scoyk, A.; Prakadan, S. M.; Shigemori, K.; Stevenson, K. E.; Morrow, S.; Plana, O. D. et al. Mechanisms of lymphoma clearance induced by high-dose alkylating agents. Cancer Discov. 2019, 9, 944–961.

25

Chen, Y. L.; Chang, M. C.; Cheng, W. F. Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett. 2017, 400, 282–292.

26

Schiavoni, G.; Sistigu, A.; Valentini, M.; Mattei, F.; Sestili, P.; Spadaro, F.; Sanchez, M.; Lorenzi, S.; D'Urso, M. T.; Belardelli, F. et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 2011, 71, 768–778.

27

Bracci, L.; Schiavoni, G.; Sistigu, A.; Belardelli, F. Immune-based mechanisms of cytotoxic chemotherapy: Implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014, 21, 15–25.

28

Brode, S.; Cooke, A. Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit. Rev. Immunol. 2008, 28, 109–126.

29

Tongu, M.; Harashima, N.; Yamada, T.; Harada, T.; Harada, M. Immunogenic chemotherapy with cyclophosphamide and doxorubicin against established murine carcinoma. Cancer Immunol., Immun. 2010, 59, 769–777.

30

Lutsiak, M. E. C.; Semnani, R. T.; De Pascalis, R.; Kashmiri, S. V. S.; Schlom, J.; Sabzevari, H. Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005, 105, 2862–2868.

31

Zhao, J.; Cao, Y. C.; Lei, Z.; Yang, Z. S.; Zhang, B.; Huang, B. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 2010, 70, 4850–4858.

32

Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J. L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61.

33

Galluzzi, L.; Kepp, O.; Kroemer, G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. EMBO J. 2012, 31, 1055–1057.

34

Dudek, A. M.; Garg, A. D.; Krysko, D. V.; De Ruysscher, D.; Agostinis, P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013, 24, 319–333.

35

Xu, F. N.; Li, X. L.; Huang, X. H.; Pan, J. M.; Wang, Y.; Zhou, S. B. Development of a pH-responsive polymersome inducing endoplasmic reticulum stress and autophagy blockade. Sci. Adv. 2020, 6, eabb8725.

36

Xu, F. N.; Huang, X. H.; Wang, Y.; Zhou, S. B. A size-changeable collagenase-modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue. Adv. Mater. 2020, 32, 1906745.

37
McFadyen, M. C. E.; Melvin, W. T.; Murray, G. I. Cytochrome P450 enzymes: Novel options for cancer therapeutics. Mol. Cancer Ther. 2004, 3, 363–371.
38

Sun, Y. J.; Feng, X. R.; Wan, C.; Lovell, J. F.; Jin, H. L.; Ding, J. X. Role of nanoparticle-mediated immunogenic cell death in cancer immunotherapy. Asian J. Pharm. Sci. 2021, 16, 129–132.

39

Feng, X. R.; Xu, W. G.; Liu, J. H.; Li, D.; Li, G.; Ding, J. X.; Chen, X. S. Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Sci. Bull. 2021, 66, 362–373.

40

Chen, C.; Ni, X.; Jia, S. R.; Liang, Y.; Wu, X. L.; Kong, D. L.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904914.

41

Li, J.; Fang, Y. A.; Zhang, Y. F.; Wang, H. M.; Yang, Z. M.; Ding, D. Supramolecular self-assembly-facilitated aggregation of tumor-specific transmembrane receptors for signaling activation and converting immunologically cold to hot tumors. Adv. Mater. 2021, 33, 2008518.

42

He, L. Z.; Nie, T. Q.; Xia, X. J.; Liu, T.; Huang, Y. Y.; Wang, X. J.; Chen, T. F. Designing bioinspired 2D MoSe2 nanosheet for efficient photothermal-triggered cancer immunotherapy with reprogramming tumor-associated macrophages. Adv. Funct. Mater. 2019, 29, 1901240.

43

Hou, B.; Zhou, L.; Wang, H.; Saeed, M.; Wang, D. G.; Xu, Z. A.; Li, Y. P.; Yu, H. J. Engineering stimuli-activatable boolean logic prodrug nanoparticles for combination cancer immunotherapy. Adv. Mater. 2020, 32, 1907210.

44

Li, Z. T.; Wang, Y. X.; Shen, Y. X.; Qian, C. G.; Oupicky, D.; Sun, M. J. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti–PD-L1 immunotherapy. Sci. Adv. 2020, 6, eaaz9240.

Nano Research
Pages 2324-2334
Cite this article:
Shao B, Huang X, Xu F, et al. A pH-responsive polymersome depleting regulatory T cells and blocking A2A receptor for cancer immunotherapy. Nano Research, 2022, 15(3): 2324-2334. https://doi.org/10.1007/s12274-021-3815-z
Topics:

809

Views

6

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 16 June 2021
Revised: 09 August 2021
Accepted: 12 August 2021
Published: 28 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return