AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in flexible batteries: From materials to applications

Fuwei Xiang1,2Fang Cheng1,2Yongjiang Sun1,2Xiaoping Yang1,2Wen Lu1,2( )Rose Amal3Liming Dai3( )
College of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
Institute of Energy Storage Technologies, Yunnan University, Kunming 650091, China
Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Show Author Information

Graphical Abstract

Flexible batteries are essential flexible power sources for flexible and wearable electronic devices. An ideal flexible battery should have not only just high electrochemical performance but also excellent mechanical deformabilities, which requires the extensive research on all pivotal aspects of the battery including battery constituent components, chemistry systems, device configurations, and practical applications.

Abstract

Along with the rapid development of flexible and wearable electronic devices, there have been a strong demand for flexible power sources, which has in turn triggered considerable efforts on the research and development of flexible batteries. An ideal flexible battery would have not only just high electrochemical performance but also excellent mechanical deformabilities. Therefore, battery constituent components, chemistry systems, device configurations, and practical applications are all pivotal aspects that should be thoroughly considered. Herein, we systematically and comprehensively review the fundamentals and recent progresses of flexible batteries in terms of these important aspects. Specifically, we first discuss the requirements for constituent components, including the current collector, electrolyte, and separator, in flexible batteries. We then elucidate battery chemistry systems that have been studied for various flexible batteries, including lithium-ion batteries, non-lithium-ion batteries, and high-energy metal batteries. This is followed by discussions on the device configurations for flexible batteries, including one-dimensional fiber-shaped, two-dimensional film-shaped, and three-dimensional structural batteries. Finally, we summarize recent efforts in exploring practical applications for flexible batteries. Current challenges and future opportunities for the research and development of flexible batteries are also discussed.

References

[1]

Li, W. G.; Guo, J. H.; Fan, D. L. 3D graphite-polymer flexible strain sensors with ultrasensitivity and durability for real-time human vital sign monitoring and musical instrument education. Adv. Mater. Technol. 2017, 2, 1700070.

[2]

Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E. et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 2015, 27, 2433–2439.

[3]

Xie, K. Y.; Wei, B. Q. Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 2014, 26, 3592–3617.

[4]

Zhai, Q. F.; Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P; Lu, W.; Dai, L. M. Recent advances in flexible/stretchable batteries and integrated devices. Energy Storage Mater. 2020, 33, 116–138.

[5]

He, Y. H.; Matthews, B.; Wang, J. Y.; Song, L.; Wang, X.; Wu, G. Innovation and challenges in materials design for flexible rechargeable batteries: From 1D to 3D. J. Mater. Chem. A 2018, 6, 735–753.

[6]

Kong, L.; Tang, C.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Advanced energy materials for flexible batteries in energy storage: A review. SmartMat 2020, 1, e1007.

[7]

Zeng, L. C.; Qiu, L.; Cheng, H. M. Towards the practical use of flexible lithium ion batteries. Energy Storage Mater. 2019, 23, 434–438.

[8]

Yang, Y. A mini-review: Emerging all-solid-state energy storage electrode materials for flexible devices. Nanoscale 2020, 12, 3560–3573.

[9]

Bocchetta, P.; Frattini, D.; Ghosh, S.; Mohan, A. M. V.; Kumar, Y.; Kwon, Y. Soft materials for wearable/flexible electrochemical energy conversion, storage, and biosensor devices. Materials 2020, 13, 2733.

[10]

Lin, L. Y.; Ning, H. M.; Song, S. F.; Xu, C. H.; Hu, N. Flexible electrochemical energy storage: The role of composite materials. Compos. Sci. Technol. 2020, 192, 108102.

[11]

Qian, G. Y.; Liao, X. B.; Zhu, Y. X.; Pan, F.; Chen, X.; Yang, Y. Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 2019, 4, 690–701.

[12]

Tao, T.; Lu, S. G.; Chen, Y. A review of advanced flexible lithium-ion batteries. Adv. Mater. Technol. 2018, 3, 1700375.

[13]

Foreman, E.; Zakri, W.; Sanatimoghaddam, M. H.; Modjtahedi, A.; Pathak, S.; Kashkooli, A. G.; Garafolo, N. G.; Farhad, S. A review of inactive materials and components of flexible lithium-ion batteries. Adv. Sustainable Syst. 2017, 1, 1700061.

[14]

Zhao, Y. F.; Guo, J. C. Development of flexible Li-ion batteries for flexible electronics. InfoMat 2020, 2, 866–878.

[15]

Liu, Y.; Sun, Z. H.; Tan, K.; Denis, D. K.; Sun, J. F.; Liang, L. W.; Hou, L. R.; Yuan, C. Z. Recent progress in flexible non-lithium based rechargeable batteries. J. Mater. Chem. A 2019, 7, 4353–4382.

[16]

Zhang, E. J.; Jia, X. X.; Wang, B.; Wang, J.; Yu, X. Z.; Lu, B. G. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 2020, 7, 2000470.

[17]

Duan, H.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Shi, J. L.; Shi, Y.; Wen, R.; Guo, Y. G.; Wan, L. J. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018, 10, 85–91.

[18]

Wang, Z. H.; Pan, R. J.; Sun, R.; Edström, K.; Strømme, M.; Nyholm, L. Nanocellulose structured paper-based lithium metal batteries. ACS Appl. Energy Mater. 2018, 1, 4341–4350.

[19]

Wu, N.; Shi, Y. R.; Lang, S. Y.; Zhou, J. M.; Liang, J. Y.; Wang, W.; Tan, S. J.; Yin, Y. X.; Wen, R.; Guo, Y. G. Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew. Chem., Int. Ed. 2019, 58, 18146–18149.

[20]

Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.

[21]

Gong, Y. H.; Fu, K.; Xu, S. M.; Dai, J. Q.; Hamann, T. R.; Zhang, L.; Hitz, G. T.; Fu, Z. Z.; Ma, Z. H.; McOwen, D. W. et al. Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries. Mater. Today 2018, 21, 594–601.

[22]

Wang, S. J.; Xiong, P.; Zhang, J. Q.; Wang, G. X. Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Mater. 2020, 29, 310–331.

[23]

Wang, Z. S.; Xu, X. J.; Ji, S. M.; Liu, Z. B.; Zhang, D. C.; Shen, J. D.; Liu, J. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. J. Mater. Sci. Technol. 2020, 55, 56–72.

[24]

Peng, H. J.; Huang, J. Q.; Zhang, Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 2017, 46, 5237–5288.

[25]

Gao, Y.; Guo, Q. Y.; Zhang, Q.; Cui, Y.; Zheng, Z. J. Fibrous materials for flexible Li-S battery. Adv. Energy Mater. 2021, 11, 2002580.

[26]

Ye, L.; Hong, Y.; Liao, M.; Wang, B. J.; Wei, D. C.; Peng, H. S.; Ye, L.; Hong, Y.; Liao, M.; Wang, B. et al. Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater. 2020, 28, 364–374.

[27]

Zhou, J. W.; Cheng, J. L.; Wang, B.; Peng, H. S.; Lu, J. Flexible metal–gas batteries: A potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 2020, 13, 1933–1970.

[28]

Kwon, Y. H.; Woo, S. W.; Jung, H. R.; Yu, H. K.; Kim, K.; Oh, B. H.; Ahn, S.; Lee, S. Y.; Song, S. W.; Cho, J. et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 2012, 24, 5192–5197.

[29]

Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810–4816.

[30]

Qian, G. Y.; Zhu, B.; Liao, X. B.; Zhai, H. W.; Srinivasan, A.; Fritz, N. J.; Cheng, Q.; Ning, M. Q.; Qie, B. Y.; Li, Y. et al. Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Adv. Mater. 2018, 30, 1704947.

[31]

Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.

[32]

Kim, S. W.; Cho, K. Y. Current collectors for flexible lithium ion batteries: A review of materials. J. Electrochem. Sci. Technol. 2015, 6, 1–6.

[33]

Li, Q.; Ardebili, H. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte. J. Power Sources 2016, 303, 17–21.

[34]

Gockeln, M.; Glenneberg, J.; Busse, M.; Pokhrel, S.; Mädler, L.; Kun, R. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries. Nano Energy 2018, 49, 564–573.

[35]

Jeon, H.; Cho, I.; Jo, H.; Kim, K.; Ryou, M. H.; Lee, Y. M. Highly rough copper current collector: Improving adhesion property between a silicon electrode and current collector for flexible lithium-ion batteries. RSC Adv. 2017, 7, 35681–35686.

[36]

Wang, C.; Cao, Y. H.; Luo, Z. P.; Li, G. Z.; Xu, W. L.; Xiong, C. X.; He, G. Q.; Wang, Y. D.; Li, S.; Liu, H. et al. Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery. Chem. Eng. J. 2017, 307, 382–388.

[37]

Zhao, J.; Ren, H.; Liang, Q. H.; Yuan, D.; Xi, S. B.; Wu, C.; Manalastas, W. Jr.; Ma, J. M.; Fang, W.; Zheng, Y. et al. High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy 2019, 62, 94–102.

[38]

Zhang, Y.; Wang, L.; Guo, Z. Y.; Xu, Y. F.; Wang, Y. G.; Peng, H. S. High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem., Int. Ed. 2016, 55, 4487–4491.

[39]

Lee, K. L.; Jung, J. Y.; Lee, S. W.; Moon, H. S.; Park, J. W. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources 2004, 129, 270–274.

[40]

Kim, Y. L.; Sun, Y. K.; Lee, S. M. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochim. Acta 2008, 53, 4500–4504.

[41]

Park, M. H.; Noh, M.; Lee, S.; Ko, M.; Chae, S.; Sim, S.; Choi, S.; Kim, H.; Nam, H.; Park, S. et al. Flexible high-energy Li-ion batteries with fast-charging capability. Nano Lett. 2014, 14, 4083–4089.

[42]

Zhao, Z. X.; Wu, H. Q. Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Res. 2019, 12, 2477–2484.

[43]

Yun, J. H.; Han, G. B.; Lee, Y. M.; Lee, Y. G.; Kim, K. M.; Park, J. K.; Cho, K. Y. Low resistance flexible current collector for lithium secondary battery. Electrochem. Solid-State Lett. 2011, 14, A116.

[44]

Choi, J. Y.; Lee, D. J.; Lee, Y. M.; Lee, Y. G.; Kim, K. M.; Park, J. K.; Cho, K. Y. Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes. Adv. Funct. Mater. 2013, 23, 2108–2114.

[45]

Wang, J. Z.; Chou, S. L.; Chen, J.; Chew, S. Y.; Wang, G. X.; Konstantinov, K.; Wu, J.; Dou, S. X.; Liu, H. K. Paper-like free-standing polypyrrole and polypyrrole-LiFePO4 composite films for flexible and bendable rechargeable battery. Electrochem. Commun. 2008, 10, 1781–1784.

[46]

Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.

[47]

Aliahmad, N.; Liu, Y. D.; Xie, J.; Agarwal, M. V2O5/graphene hybrid supported on paper current collectors for flexible ultrahigh-capacity electrodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 16490–16499.

[48]

Yehezkel, S.; Auinat, M.; Sezin, N.; Starosvetsky, D.; Ein-Eli, Y. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors. J. Power Sources 2016, 312, 109–115.

[49]

Yitzhack, N.; Auinat, M.; Sezin, N.; Ein-Eli, Y. Carbon nanotube tissue as anode current collector for flexible Li-ion batteries-understanding the controlling parameters influencing the electrochemical performance. APL Mater. 2018, 6, 111102.

[50]

Sun, L. M.; Wang, X. H.; Wang, Y. R.; Zhang, Q. Roles of carbon nanotubes in novel energy storage devices. Carbon 2017, 122, 462–474.

[51]

Jia, L. J.; Wang, J.; Chen, Z. J.; Su, Y. P.; Zhao, W.; Wang, D. T.; Wei, Y.; Jiang, K. L.; Wang, J. P.; Wu, Y. et al. High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes. Nano Res. 2019, 12, 1105–1113.

[52]

Hori, K.; Yamada, Y.; Momma, T.; Noda, S. High-energy density LixSi-S full cell based on 3D current collector of few-wall carbon nanotube sponge. Carbon 2020, 161, 612–621.

[53]

Zhou, Z. Y.; Si, W. P.; Lu, P. Y.; Guo, W. L.; Wang, L.; Zhang, T.; Hou, F.; Liang, J. A flexible CNT@nickel silicate composite film for high-performance sodium storage. J. Energy Chem. 2020, 47, 29–37.

[54]

Lu, H. R.; Hagberg, J.; Lindbergh, G.; Cornell, A. Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries. Nano Energy 2017, 39, 140–150.

[55]

Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027–4054.

[56]

Yang, H.; Wang, M.; Liu, X. W.; Jiang, Y.; Yu, Y. MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 2018, 11, 3844–3853.

[57]

Chen, X.; Zhao, Z.; Zhou, Y.; Shu, Y.; Sajjad, M.; Bi, Q. S.; Ren, Y.; Wang, X.; Zhou, X. W.; Liu, Z. MWCNTs modified α-Fe2O3 nanoparticles as anode active materials and carbon nanofiber paper as a flexible current collector for lithium-ion batteries application. J. Alloys Compd. 2019, 776, 974–983.

[58]

Kretschmer, K.; Sun, B.; Xie, X. Q.; Chen, S. Q.; Wang, G. X. A free-standing LiFePO4-carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chem. 2016, 18, 2691–2698.

[59]

Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105–6112.

[60]

Cao, Z. X.; Zhang, J.; Ding, Y. M.; Li, Y. L.; Shi, M. J.; Yue, H. Y.; Qiao, Y.; Yin, Y. H.; Yang, S. T. In situ synthesis of flexible elastic N-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries. J. Mater. Chem. A 2016, 4, 8636–8644.

[61]

Yang, L. Y.; Li, H. Z.; Cheng, L. Z.; Li, S. T.; Liu, J.; Min, J.; Zhu, K. J.; Wang, H.; Lei, M. A three-dimensional surface modified carbon cloth designed as flexible current collector for high-performance lithium and sodium batteries. J. Alloys Compd. 2017, 726, 837–845.

[62]

Rana, K.; Singh, J.; Lee, J. T.; Park, J. H.; Ahn, J. H. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 11158–11166.

[63]

Liu, Y.; Yao, M. J.; Zhang, L. L.; Niu, Z. Q. Large-scale fabrication of reduced graphene oxide-sulfur composite films for flexible lithium-sulfur batteries. J. Energy Chem. 2019, 38, 199–206.

[64]

Wu, Z. P.; Wang, Y. L.; Liu, X. B.; Lv, C.; Li, Y. S.; Wei, D.; Liu, Z. F. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 2019, 31, 1800716.

[65]

Noerochim, L.; Wang, J. Z.; Chou, S. L.; Wexler, D.; Liu, H. K. Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 2012, 50, 1289–1297.

[66]

Zhu, P.; Yan, C. Y.; Zhu, J. D.; Zang, J.; Li, Y.; Jia, H.; Dong, X.; Du, Z.; Zhang, C. M.; Wu, N. Q. et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Mater. 2019, 17, 220–225.

[67]

Wang, K.; Luo, S.; Wu, Y.; He, X. F.; Zhao, F.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 2013, 23, 846–853.

[68]

Wang, Y.; Kong, D. Z.; Huang, S. Z.; Shi, Y. M.; Ding, M.; Von Lim, Y.; Xu, T. T.; Chen, F. M.; Li, X. J.; Yang, H. Y. 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem. A 2018, 6, 10813–10824.

[69]

Chong, W. G.; Xiao, Y. H.; Huang, J. Q.; Yao, S. S.; Cui, J.; Qin, L.; Gao, C.; Kim, J. K. Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium-sulfur batteries. Nanoscale 2018, 10, 21132–21141.

[70]

Zhong, Y. T.; Pan, Z. H.; Wang, X. S.; Yang, J.; Qiu, Y. C.; Xu, S. Y.; Lu, Y. T.; Huang, Q. M.; Li, W. S. Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci. 2019, 6, 1802243.

[71]

Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.

[72]

Li, Z.; Borodin, O.; Smith, G. D.; Bedrov, D. Effect of organic solvents on Li+ ion solvation and transport in ionic liquid electrolytes: A molecular dynamics simulation study. J. Phys. Chem. B 2015, 119, 3085–3096.

[73]

Howlett, P. C.; Brack, N.; Hollenkamp, A. F.; Forsyth, M.; MacFarlane, D. R. Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl)amide room-temperature ionic liquid electrolytes. J. Electrochem. Soc. 2006, 153, A595–A606.

[74]

Kuang, Y. D.; Chen, C. J.; Pastel, G.; Li, Y. J.; Song, J. W.; Mi, R. Y.; Kong, W. Q.; Liu, B. Y.; Jiang, Y. Q.; Yang, K. et al. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 2018, 8, 1802398.

[75]

Kong, D. Z.; Wang, Y.; Huang, S. Z.; Von Lim, Y.; Zhang, J.; Sun, L. F.; Liu, B.; Chen, T. P.; Valdivia y Alvarado, P.; Yang, H. Y. Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability. J. Mater. Chem. A 2019, 7, 12751–12762.

[76]

Chang, J.; Shang, J.; Sun, Y. M.; Ono, L. K.; Wang, D. R.; Ma, Z. J.; Huang, Q. Y.; Chen, D. D.; Liu, G. Q.; Cui, Y. et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 2018, 9, 4480.

[77]

Wang, J.; Zhang, L.; Zhou, Q. W.; Wu, W. L.; Zhu, C.; Liu, Z. Q.; Chang, S. Z.; Pu, J.; Zhang, H. G. Ultra-flexible lithium ion batteries fabricated by electrodeposition and solvothermal synthesis. Electrochim. Acta 2017, 237, 119–126.

[78]

Zhang, W.; Liu, Y. T.; Chen, C. J.; Li, Z.; Huang, Y. H.; Hu, X. L. Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 2015, 11, 3822–3829.

[79]

Pan, R. J.; Cheung, O.; Wang, Z. H.; Tammela, P.; Huo, J. X.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Mesoporous Cladophora cellulose separators for lithium-ion batteries. J. Power Sources 2016, 321, 185–192.

[80]

Pan, R. J.; Wang, Z. H.; Sun, R.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose 2017, 24, 2903–2911.

[81]

Leijonmarck, S.; Cornell, A.; Lindbergh, G.; Wågberg, L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A 2013, 1, 4671–4677.

[82]

Kim, J. H.; Kim, J. H.; Kim, J. M.; Lee, Y. G.; Lee, S. Y. Superlattice crystals-mimic, flexible/functional ceramic membranes: Beyond polymeric battery separators. Adv. Energy Mater. 2015, 5, 1500954.

[83]

Suriyakumar, S.; Raja, M.; Angulakshmi, N.; Nahm, K. S.; Stephan, A. M. A flexible zirconium oxide based-ceramic membrane as a separator for lithium-ion batteries. RSC Adv. 2016, 6, 92020–92027.

[84]

Raja, M.; Angulakshmi, N.; Thomas, S.; Kumar, T. P.; Stephan, A. M. Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries. J. Membr. Sci. 2014, 471, 103–109.

[85]

Lu, Q. W.; He, Y. B.; Yu, Q. P.; Li, B. H.; Kaneti, Y. V.; Yao, Y. W.; Kang, F. Y.; Yang, Q. H. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 2017, 29, 1604460.

[86]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[87]

Zhao, N. N.; Wu, F.; Xing, Y.; Qu, W. J.; Chen, N.; Shang, Y. X.; Yan, M. X.; Li, Y. J.; Li, L.; Chen, R. J. Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15537–15542.

[88]

Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

[89]

Shen, W.; Li, K.; Lv, Y. Y.; Xu, T.; Wei, D.; Liu, Z. F. Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications. Adv. Energy Mater. 2020, 10, 1904281.

[90]

Li, S. Q.; Zhang, D.; Meng, X. Y.; Huang, Q. A.; Sun, C. W.; Wang, Z. L. A flexible lithium-ion battery with quasi-solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator. Energy Storage Mater. 2018, 12, 17–22.

[91]

Fan, W.; Li, N. W.; Zhang, X. L.; Zhao, S. Y.; Cao, R.; Yin, Y. Y.; Xing, Y.; Wang, J. N.; Guo, Y. G.; Li, C. J. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv. Sci. 2018, 5, 1800559.

[92]

Balo, L.; Shalu; Gupta, H.; Singh, V. K.; Singh, R. K. Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim. Acta 2017, 230, 123–131.

[93]

Tan, M. J.; Li, B.; Chee, P.; Ge, X. M.; Liu, Z. L.; Zong, Y.; Loh, X. J. Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries. J. Power Sources 2018, 400, 566–571.

[94]

Nakayama, M.; Wada, S.; Kuroki, S.; Nogami, M. Factors affecting cyclic durability of all-solid-state lithiumpolymer batteries using poly (ethylene oxide)-based solid polymer electrolytes. Energy Environ. Sci. 2010, 3, 1995–2002.

[95]

Tang, C. Y.; Hackenberg, K.; Fu, Q.; Ajayan, P. M.; Ardebili, H. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett. 2012, 12, 1152–1156.

[96]

Wang, M.; Xu, N. N.; Fu, J.; Liu, Y. Y.; Qiao, J. L. High-performance binary cross-linked alkaline anion polymer electrolyte membranes for all-solid-state supercapacitors and flexible rechargeable zinc-air batteries. J. Mater. Chem. A 2019, 7, 11257–11264.

[97]

Cao, J.; Wang, L.; He, X. M.; Fang, M.; Gao, J.; Li, J. J.; Deng, L. F.; Chen, H.; Tian, G. Y.; Wang, J. L. et al. In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5955–5961.

[98]

Cao, J.; Wang, L.; Shang, Y. M.; Fang, M.; Deng, L. F.; Gao, J.; Li, J. J.; Chen, H.; He, X. M. Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochim. Acta 2013, 111, 674–679.

[99]

Lee, Y. S.; Ju, S. H.; Kim, J. H.; Hwang, S. S.; Choi, J. M.; Sun, Y. K.; Kim, H.; Scrosati, B.; Kim, D. W. Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries. Electrochem. Commun. 2012, 17, 18–21.

[100]

Ju, S. H.; Lee, Y. S.; Sun, Y. K.; Kim, D. W. Unique core–shell structured SiO2(Li+) nanoparticles for high-performance composite polymer electrolytes. J. Mater. Chem. A 2013, 1, 395–401.

[101]

Kil, E. H.; Choi, K. H.; Ha, H. J.; Xu, S.; Rogers, J. A.; Kim, M. R.; Lee, Y. G.; Kim, K. M.; Cho, K. Y.; Lee, S. Y. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv. Mater. 2013, 25, 1395–1400.

[102]

Kim, J. K.; Lim, Y. J.; Kim, H.; Cho, G. B.; Kim, Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ. Sci. 2015, 8, 3589–3596.

[103]

Wang, T. R.; Zhang, R. Q.; Wu, Y. M.; Zhu, G. N.; Hu, C. C.; Wen, J. Y.; Luo, W. Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries. J. Energy Chem. 2020, 46, 187–190.

[104]

Pan, K. C.; Zhang, L.; Qian, W. W.; Wu, X. K.; Dong, K.; Zhang, H. T.; Zhang, S. J. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, 2000399.

[105]

Jiang, T. L.; He, P. G.; Wang, G. X.; Shen, Y.; Nan, C. W.; Fan, L. Z. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 2020, 10, 1903376.

[106]

Yang, L. Y.; Wang, Z. J.; Feng, Y. C.; Tan, R.; Zuo, Y. X.; Gao, R. T.; Zhao, Y.; Han, L.; Wang, Z. Q.; Pan, F. Flexible composite solid electrolyte facilitating highly stable "soft contacting" Li-electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701437.

[107]

Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.

[108]

He, Z. J.; Chen, L.; Zhang, B. C.; Liu, Y. C.; Fan, L. Z. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 2018, 392, 232–238.

[109]

Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074.

[110]

Gaikwad, A. M.; Whiting, G. L.; Steingart, D. A.; Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 2011, 23, 3251–3255.

[111]

Saunier, J.; Alloin, F.; Sanchez, J. Y.; Caillon, G. Thin and flexible lithium-ion batteries: Investigation of polymer electrolytes. J. Power Sources 2003, 119–121,454-459.

[112]

Wang, J. Z.; Too, C. O.; Wallace, G. G. A highly flexible polymer fibre battery. J. Power Sources 2005, 150, 223–228.

[113]

Abouimrane, A.; Abu-Lebdeh, Y.; Alarco, P. J.; Armand, M. Plastic crystal-lithium batteries: An effective ambient temperature all-solid-state power source. J. Electrochem. Soc. 2004, 151, A1028–A1031.

[114]

Berg, E. J.; Villevieille, C.; Streich, D.; Trabesinger, S.; Novák, P. Rechargeable batteries: Grasping for the limits of chemistry. J. Electrochem. Soc. 2015, 162, A2468–A2475.

[115]

Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Jiang, L. W.; Rong, X. H.; Hu, Y. S.; Li, H.; Chen, L. Q. Novel methods for sodium-ion battery materials. Small Methods 2017, 1, 1600063.

[116]

Wang, Q. D.; Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Zheng, Y. H.; Qi, Y. R.; Rong, X. H.; Jiang, L. W.; Qi, X. G.; Shao, Y. J. et al. Advanced nanostructured anode materials for sodium-ion batteries. Small 2017, 13, 1701835.

[117]

Fang, Y. J.; Liu, Q.; Xiao, L. F.; Rong, Y. C.; Liu, Y. D.; Chen, Z. X.; Ai, X. P.; Cao, Y. L.; Yang, H. X.; Xie, J. et al. A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries. Chem 2018, 4, 1167–1180.

[118]

Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.

[119]

Xu, Y. S.; Duan, S. Y.; Sun, Y. G.; Bin, D. S.; Tao, X. S.; Zhang, D.; Liu, Y.; Cao, A. M.; Wan, L. J. Recent developments in electrode materials for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4334–4352.

[120]

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 2018, 28, 1802938.

[121]

Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.

[122]

Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939–1964.

[123]

Goodenough, J. B. Energy storage materials: A perspective. Energy Storage Mater. 2015, 1, 158–161.

[124]

Liu, Y. T.; Zhu, X. D.; Duan, Z. Q.; Xie, X. M. Flexible and robust MoS2-graphene hybrid paper cross-linked by a polymer ligand: A high-performance anode material for thin film lithium-ion batteries. Chem. Commun. 2013, 49, 10305–10307.

[125]

Bao, J. J.; Zou, B. K.; Cheng, Q.; Huang, Y. P.; Wu, F.; Xu, G. W.; Chen, C. H. Flexible and free-standing LiFePO4/TPU/SP cathode membrane prepared via phase separation process for lithium ion batteries. J. Membr. Sci. 2017, 541, 633–640.

[126]

Zhao, Q. S.; Liu, J. L.; Li, X. X.; Xia, Z. Z.; Zhang, Q. X.; Zhou, M.; Tian, W.; Wang, M.; Hu, H.; Li, Z. T. et al. Graphene oxide-induced synthesis of button-shaped amorphous Fe2O3/rGO/CNFs films as flexible anode for high-performance lithium-ion batteries. Chem. Eng. J. 2019, 369, 215–222.

[127]

Ren, J.; Ren, R. P.; Lv, Y. K. A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chem. Eng. J. 2018, 353, 419–424.

[128]

Zhao, F. Y.; Zhao, X.; Peng, B.; Gan, F.; Yao, M. Y.; Tan, W. J.; Dong, J.; Zhang, Q. H. Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium ion batteries. Chin. Chem. Lett. 2018, 29, 1692–1697.

[129]

Huang, X. Y.; Cai, X.; Xu, D. H.; Chen, W. Y.; Wang, S. J.; Zhou, W. Y.; Meng, Y. Z.; Fang, Y. P.; Yu, X. Y. Hierarchical Fe2O3@CNF fabric decorated with MoS2 nanosheets as a robust anode for flexible lithium-ion batteries exhibiting ultrahigh areal capacity. J. Mater. Chem. A 2018, 6, 16890–16899.

[130]

Min, X.; Sun, B.; Chen, S.; Fang, M. H.; Wu, X. W.; Liu, Y. G.; Abdelkader, A.; Huang, Z. H.; Liu, T.; Xi, K. et al. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 2019, 16, 597–606.

[131]

Zheng, S. H.; Wu, Z. S.; Zhou, F.; Wang, X.; Ma, J. M.; Liu, C.; He, Y. B.; Bao, X. H. All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 2018, 51, 613–620.

[132]

Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

[133]

Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance. Acc. Chem. Res. 2015, 48, 1657–1665.

[134]

Wang, H. G.; Li, W.; Liu, D. P.; Feng, X. L.; Wang, J.; Yang, X. Y.; Zhang, X. B.; Zhu, Y. J.; Zhang, Y. Flexible electrodes for sodium-ion batteries: Recent progress and perspectives. Adv. Mater. 2017, 29, 1703012.

[135]

Bian, H. D.; Xiao, X. F.; Zeng, S. S.; Yuen, M. F.; Li, Z. B.; Kang, W. P.; Yu, D. Y. W.; Xu, Z. T.; Lu, J.; Li, Y. Y. Mesoporous C-coated SnOx nanosheets on copper foil as flexible and binder-free anodes for superior sodium-ion batteries. J. Mater. Chem. A 2017, 5, 2243–2250.

[136]

Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

[137]

Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544–4551.

[138]

Yang, T. Z.; Qian, T.; Wang, M. F.; Shen, X. W.; Xu, N.; Sun, Z. Z.; Yan, C. L. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 2016, 28, 539–545.

[139]

Li, H. S.; Ding, Y.; Ha, H.; Shi, Y.; Peng, L. L.; Zhang, X. G.; Ellison, C. J.; Yu, G. H. An all-stretchable-component sodium-ion full battery. Adv. Mater. 2017, 29, 1700898.

[140]

Guo, J. Z.; Gu, Z. Y.; Zhao, X. X.; Wang, M. Y.; Yang, X.; Yang, Y.; Li, W. H.; Wu, X. L. Flexible Na/K-ion full batteries from the renewable cotton cloth-derived stable, low-cost, and binder-free anode and cathode. Adv. Energy Mater. 2019, 9, 1902056.

[141]

Zhou, C. S.; Fan, S. X.; Hu, M. X.; Lu, J. M.; Li, J.; Huang, Z. H.; Kang, F. Y.; Lv, R. T. High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 15517–15524.

[142]

Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.

[143]

Sun, N.; Guan, Y. B.; Liu, Y. T.; Zhu, Q. Z.; Shen, J. R.; Liu, H.; Zhou, S. Q.; Xu, B. Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder. Carbon 2018, 137, 475–483.

[144]

Kretschmer, K.; Sun, B.; Zhang, J. Q.; Xie, X. Q.; Liu, H.; Wang, G. X. 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium-ion batteries. Small 2017, 13, 1603318.

[145]

Ma, X. X.; Chen, L.; Ren, X. H.; Hou, G. M.; Chen, L. N.; Zhang, L.; Liu, B. B.; Ai, Q.; Zhang, L.; Si, P. C. et al. High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries. J. Mater. Chem. A 2018, 6, 1574–1581.

[146]

Huang, Y.; Fang, C.; Zeng, R.; Liu, Y. J.; Zhang, W.; Wang, Y. J.; Liu, Q. J.; Huang, Y. H. In situ-formed hierarchical metal-organic flexible cathode for high-energy sodium-ion batteries. ChemSusChem 2017, 10, 4704–4708.

[147]

Ren, X. L.; Turcheniuk, K.; Lewis, D.; Fu, W. B.; Magasinski, A.; Schauer, M. W.; Yushin, G. Iron phosphate coated flexible carbon nanotube fabric as a multifunctional cathode for Na-ion batteries. Small 2018, 14, 1703425.

[148]

Chen, Q.; Sun, S.; Zhai, T.; Yang, M.; Zhao, X. Y.; Xia, H. Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv. Energy Mater. 2018, 8, 1800054.

[149]

Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615–1621.

[150]

Wang, X. W.; Guo, H. P.; Liang, J.; Zhang, J. F.; Zhang, B.; Wang, J. Z.; Luo, W. B.; Liu, H. K.; Dou, S. X. An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1801016.

[151]

Wang, Y. W.; Xiao, N.; Wang, Z. Y.; Tang, Y. C.; Li, H. Q.; Yu, M. L.; Liu, C.; Zhou, Y.; Qiu, J. S. Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries. Carbon 2018, 135, 187–194.

[152]

Choe, J. H.; Kim, N. R.; Lee, M. E.; Yoon, H. J.; Song, M. Y.; Jin, H. J.; Yun, Y. S. Flexible graphene stacks for sodium-ion storage. ChemElectroChem 2017, 4, 716–720.

[153]

Deng, X.; Xie, K. Y.; Li, L.; Zhou, W.; Sunarso, J.; Shao, Z. P. Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. Carbon 2016, 107, 67–73.

[154]

An, H. R.; Li, Y.; Gao, Y.; Cao, C.; Han, J. K.; Feng, Y. Y.; Feng, W. Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. Carbon 2017, 116, 338–346.

[155]

Wang, S. Q.; Xia, L.; Yu, L.; Zhang, L.; Wang, H. H.; Lou, X. W. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 2016, 6, 1502217.

[156]

Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 2018, 14, 1702864.

[157]

Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 2014, 13, 69–73.

[158]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[159]

Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Yan, M.; Liang, J. Y.; Yang, Y. G.; Kong, Q. H. et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Res. 2020, 13, 430–436.

[160]

Zhang, X. L.; Zhao, S. Y.; Fan, W.; Wang, J. N.; Li, C. J. Long cycling, thermal stable, dendrites free gel polymer electrolyte for flexible lithium metal batteries. Electrochim. Acta 2019, 301, 304–311.

[161]

Li, D.; Chen, L.; Wang, T. S.; Fan, L. Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 7069–7078.

[162]

Zhou, B. H.; Zuo, C.; Xiao, Z. L.; Zhou, X. P.; He, D.; Xie, X. L.; Xue, Z. G. Self-healing polymer electrolytes formed via dual-networks: A new strategy for flexible lithium metal batteries. Chem.—Eur. J. 2018, 24, 19200–19207.

[163]

Zhu, Y. H.; Cao, J.; Chen, H.; Yu, Q. P.; Li, B. H. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 2019, 7, 6832–6839.

[164]

Zhao, Y.; Zhang, Y.; Sun, H.; Dong, X. L.; Cao, J. Y.; Wang, L.; Xu, Y. F.; Ren, J.; Hwang, Y.; Son, I. H. et al. A self-healing aqueous lithium-ion battery. Angew. Chem., Int. Ed. 2016, 55, 14384–14388.

[165]

Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett. 2015, 15, 3317–3323.

[166]

Li, C. M.; Zhang, H.; Otaegui, L.; Singh, G.; Armand, M.; Rodriguez-Martinez, L. M. Estimation of energy density of Li-S batteries with liquid and solid electrolytes. J. Power Sources 2016, 326, 1–5.

[167]

Zheng, D.; Zhang, X. R.; Wang, J. K.; Qu, D. Y.; Yang, X. Q.; Qu, D. Y. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide. J. Power Sources 2016, 301, 312–316.

[168]

Helen, M.; Reddy, M. A.; Diemant, T.; Golla-Schindler, U.; Behm, R. J.; Kaiser, U.; Fichtner, M. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries. Sci. Rep. 2015, 5, 12146.

[169]

Choi, S.; Yoon, I.; Nichols, W. T.; Shin, D. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2S-P2S5 solid electrolyte. Ceram. Int. 2018, 44, 7450–7453.

[170]

Jamesh, M. I. Recent advances on flexible electrodes for Na-ion batteries and Li-S batteries. J. Energy Chem. 2019, 32, 15–44.

[171]

Liu, R. Q.; Liu, Y. J.; Chen, J.; Kang, Q.; Wang, L. L.; Zhou, W. X.; Huang, Z. D.; Lin, X. J.; Li, Y.; Li, P. et al. Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action. Nano Energy 2017, 33, 325–333.

[172]

Wahyudi, W.; Cao, Z.; Kumar, P.; Li, M. L.; Wu, Y. Q.; Hedhili, M. N.; Anthopoulos, T. D.; Cavallo, L.; Li, L. J.; Ming, J. Phase inversion strategy to flexible freestanding electrode: Critical coupling of binders and electrolytes for high performance Li-S battery. Adv. Funct. Mater. 2018, 28, 1802244.

[173]

Wei, H.; Ma, J.; Li, B.; Zuo, Y. X.; Xia, D. G. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer. ACS Appl. Mater. Interfaces 2014, 6, 20276–20281.

[174]

Ming, J.; Li, M. L.; Kumar, P.; Lu, A. Y.; Wahyudi, W.; Li, L. J. Redox species-based electrolytes for advanced rechargeable lithium ion batteries. ACS Energy Lett. 2016, 1, 529–534.

[175]

Agostini, M.; Scrosati, B.; Hassoun, J. An advanced lithium-ion sulfur battery for high energy storage. Adv. Energy Mater. 2015, 5, 1500481.

[176]

Xiao, P. T.; Bu, F. X.; Yang, G. H.; Zhang, Y.; Xu, Y. X. Integration of graphene, Nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 2017, 29, 1703324.

[177]

Chong, W. G.; Huang, J. Q.; Xu, Z. L.; Qin, X. Y.; Wang, X. Y.; Kim, J. K. Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv. Funct. Mater. 2017, 27, 1604815.

[178]

Xiang, M. W.; Wu, H.; Liu, H.; Huang, J.; Zheng, Y. F.; Yang, L.; Jing, P.; Zhang, Y.; Dou, S. X.; Liu, H. K. A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702573.

[179]

Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.

[180]

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

[181]

Tao, Y. Q.; Wei, Y. J.; Liu, Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium–sulfur battery. Energy Environ. Sci. 2016, 9, 3230–3239.

[182]

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

[183]

Sun, Q.; Fang, X.; Weng, W.; Deng, J.; Chen, P. N.; Ren, J.; Guan, G. Z.; Wang, M.; Peng, H. S. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 10539–10544.

[184]

Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 2014, 26, 625–631.

[185]

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

[186]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

[187]

Wu, C.; Fu, L. J.; Maier, J.; Yu, Y. Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li–sulfur batteries. J. Mater. Chem. A 2015, 3, 9438–9445.

[188]

Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygenreduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

[189]

Xiang, F. W.; Chen, X. H.; Yu, J.; Ma, W. H.; Li, Y. P.; Yang, N. Synthesis of three-dimensionally ordered porous perovskite type LaMnO3 for Al-air battery. J. Mater. Sci. Technol. 2018, 34, 1532–1537.

[190]

Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn-and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

[191]

Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Luo, D.; Liu, G. H.; Li, J. D.; Zhang, Z.; Hu, Y. F.; Chen, Z. W. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911.

[192]

Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 2018, 12, 128–139.

[193]

Ji, D. X.; Peng, S. J.; Safanama, D.; Yu, H. N.; Li, L. L.; Yang, G. R.; Qin, X. H.; Srinivasan, M.; Adams, S.; Ramakrishna, S. Design of 3-dimensional hierarchical architectures of carbon and highly active transition metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithium-air batteries. Chem. Mater. 2017, 29, 1665–1675.

[194]

Xue, H. R.; Wu, S. C.; Tang, J.; Gong, H.; He, P.; He, J. P.; Zhou, H. S. Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 8427–8435.

[195]

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

[196]

Geng, D. S.; Ding, N.; Hor, T. S. A.; Liu, Z. L.; Sun, X. L.; Zong, Y. Potential of metal-free "graphene alloy" as electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 1795–1810.

[197]

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

[198]

Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem., Int. Ed. 2014, 53, 1404–1409.

[199]

Hu, Y. X.; Wei, J.; Liang, Y.; Zhang, H. C.; Zhang, X. W.; Shen, W.; Wang, H. T. Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes. Angew. Chem., Int. Ed. 2016, 55, 2048–2052.

[200]

Jiang, Y. X.; Cheng, J. F.; Zou, L.; Li, X. Y.; Huang, Y. Z.; Jia, L. C.; Chi, B.; Pu, J.; Li, J. Graphene foam decorated with ceria microspheres as a flexible cathode for foldable lithium-air batteries. ChemCatChem 2017, 9, 4231–4237.

[201]

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

[202]

Liu, Q.; Wang, Y. B.; Dai, L. M.; Yao, J. N. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 2016, 28, 3000–3006.

[203]

Kordek, K.; Jiang, L. X.; Fan, K. C.; Zhu, Z. J.; Xu, L.; Al-Mamun, M.; Dou, Y. H.; Chen, S.; Liu, P. R.; Yin, H. J. et al. Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Adv. Energy Mater. 2019, 9, 1802936.

[204]

Fu, K. K.; Cheng, J.; Li, T.; Hu, L. B. Flexible batteries: From mechanics to devices. ACS Energy Lett. 2016, 1, 1065–1079.

[205]

Mo, F. N.; Liang, G. J.; Huang, Z. D.; Li, H. F.; Wang, D. H.; Zhi, C. Y. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 2020, 32, 1902151.

[206]

Zhou, Y.; Wang, C. H.; Lu, W.; Dai, L. M. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv. Mater. 2020, 32, 1902779.

[207]

Weng, W.; Sun, Q.; Zhang, Y.; Lin, H. J.; Ren, J.; Lu, X.; Wang, M.; Peng, H. S. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 2014, 14, 3432–3438.

[208]

Zhu, Y. H.; Yuan, S.; Bao, D.; Yin, Y. B.; Zhong, H. X.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv. Mater. 2017, 29, 1603719.

[209]

Park, J.; Park, M.; Nam, G.; Lee, J. S.; Cho, J. All-solid-state cable-type flexible zinc-air battery. Adv. Mater. 2015, 27, 1396–1401.

[210]

Xu, Y. F.; Zhang, Y.; Guo, Z. Y.; Ren, J.; Wang, Y. G.; Peng, H. S. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem., Int. Ed. 2015, 54, 15390–15394.

[211]

Lin, H. J.; Weng, W.; Ren, J.; Qiu, L. B.; Zhang, Z. T.; Chen, P. N.; Chen, X. L.; Deng, J.; Wang, Y. G.; Peng, H. S. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 2014, 26, 1217–1222.

[212]

Wang, K.; Zhang, X. H.; Han, J. W.; Zhang, X.; Sun, X. Z.; Li, C.; Liu, W. H.; Li, Q. W.; Ma, Y. W. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 2018, 10, 24573–24582.

[213]

Song, C. H.; Li, Y. P.; Li, H.; He, T.; Guan, Q.; Yang, J.; Li, X. L.; Cheng, J. L.; Wang, B. A novel flexible fiber-shaped dual-ion battery with high energy density based on omnidirectional porous Al wire anode. Nano Energy 2019, 60, 285–293.

[214]

Xiao, X.; Li, T. Q.; Yang, P. H.; Gao, Y.; Jin, H. Y.; Ni, W. J.; Zhan, W. H.; Zhang, X. H.; Cao, Y. Z.; Zhong, J. W. et al. Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 2012, 6, 9200–9206.

[215]

Yadav, A.; De, B.; Singh, S. K.; Sinha, P.; Kar, K. K. Facile development strategy of a single carbon-fiber-based all-solid-state flexible lithium-ion battery for wearable electronics. ACS Appl. Mater. Interfaces 2019, 11, 7974–7980.

[216]

Guan, C.; Sumboja, A.; Zang, W. J.; Qian, Y. H.; Zhang, H.; Liu, X. M.; Liu, Z. L.; Zhao, D.; Pennycook, S. J.; Wang, J. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Mater. 2019, 16, 243–250.

[217]

Liu, T.; Liu, Q. C.; Xu, J. J.; Zhang, X. B. Cable-type water-survivable flexible Li-O2 battery. Small 2016, 12, 3101–3105.

[218]

Hu, L. B.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010, 4, 5843–5848.

[219]

Kammoun, M.; Berg, S.; Ardebili, H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale 2015, 7, 17516–17522.

[220]

Guo, Z. Y.; Li, J. L.; Xia, Y.; Chen, C.; Wang, F. M.; Tamirat, A. G.; Wang, Y. G.; Xia, Y. Y.; Wang, L.; Feng, S. H. A flexible polymer-based Li-air battery using a reduced graphene oxide/Li composite anode. J. Mater. Chem. A 2018, 6, 6022–6032.

[221]

Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

[222]

Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.

[223]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[224]

Yang, Y.; Jeong, S.; Hu, L. B.; Wu, H.; Lee, S. W.; Cui, Y. Transparent lithium-ion batteries. Proc. Natl. Acad. Sci. USA 2011, 108, 13013–13018.

[225]

Wagner, S.; Lacour, S. P.; Jones, J.; Hsu, P. H. I.; Sturm, J. C.; Li, T.; Suo, Z. G. Electronic skin: Architecture and components. Phys. E Low Dimens. Syst. Nanostruct. 2004, 25, 326–334.

[226]

Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

[227]

Yu, Y.; Luo, Y. F.; Wu, H. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Li, J.; Wang, J. P. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale 2018, 10, 19972–19978.

[228]

Kim, J. S.; Ko, D.; Yoo, D. J.; Jung, D. S.; Yavuz, C. T.; Kim, N. I.; Choi, I. S.; Song, J. Y.; Choi, J. W. A half millimeter thick coplanar flexible battery with wireless recharging capability. Nano Lett. 2015, 15, 2350–2357.

[229]

Li, T.; Suo, Z. G.; Lacour, S. P.; Wagner, S. Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 2005, 20, 3274–3277.

[230]

Song, Z. M.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C. K.; Yu, H. Y.; Jiang, H. Q. Origami lithium-ion batteries. Nat. Commun. 2014, 5, 3140.

[231]

Song, Z. M.; Wang, X.; Lv, C.; An, Y. H.; Liang, M. B.; Ma, T.; He, D.; Zheng, Y. J.; Huang, S. Q.; Yu, H. Y. et al. Kirigami-based stretchable lithium-ion batteries. Sci. Rep. 2015, 5, 10988.

[232]

Gray, D. S.; Tien, J.; Chen, C. S. High-conductivity elastomeric electronics. Adv. Mater. 2004, 16, 393–397.

[233]

Liu, Y.; Gorgutsa, S.; Santato, C.; Skorobogatiy, M. Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J. Electrochem. Soc. 2012, 159, A349–A356.

[234]

Zhang, Y.; Wang, Y. H.; Wang, L.; Lo, C. M.; Zhao, Y.; Jiao, Y. D.; Zheng, G. F.; Peng, H. S. A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A 2016, 4, 9002–9008.

[235]

Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable-shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491–496.

[236]

Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 2018, 30, 1703657.

[237]

Lee, J. M.; Choi, C.; Kim, J. H.; De Andrade, M. J.; Baughman, R. H.; Kim, S. J. Biscrolled carbon nanotube yarn structured silver-zinc battery. Sci. Rep. 2018, 8, 11150.

[238]

Ren, J.; Zhang, Y.; Bai, W. Y.; Chen, X. L.; Zhang, Z. T.; Fang, X.; Weng, W.; Wang, Y. G.; Peng, H. S. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 7864–7869.

[239]

Zhang, Y.; Jiao, Y. D.; Lu, L. J.; Wang, L.; Chen, T. Q.; Peng, H. S. An ultraflexible silicon-oxygen battery fiber with high energy density. Angew. Chem., Int. Ed. 2017, 56, 13741–13746.

[240]

Park, M.; Cha, H.; Lee, Y.; Hong, J.; Kim, S. Y.; Cho, J. Postpatterned electrodes for flexible node-type lithium-ion batteries. Adv. Mater. 2017, 29, 1605773.

[241]

Tajima, R.; Miwa, T.; Oguni, T.; Hitotsuyanagi, A.; Miyake, H.; Katagiri, H.; Goto, Y.; Saito, Y.; Goto, J.; Kaneyasu, M. et al. Truly wearable display comprised of a flexible battery, flexible display panel, and flexible printed circuit. J. Soc. Inf. Disp. 2014, 22, 237–244.

[242]

Kim, J. S.; Lee, Y. H.; Lee, I.; Kim, T. S.; Ryou, M. H.; Choi, J. W. Large area multi-stacked lithium-ion batteries for flexible and rollable applications. J. Mater. Chem. A 2014, 2, 10862–10868.

Nano Research
Pages 4821-4854
Cite this article:
Xiang F, Cheng F, Sun Y, et al. Recent advances in flexible batteries: From materials to applications. Nano Research, 2023, 16(4): 4821-4854. https://doi.org/10.1007/s12274-021-3820-2
Part of a topical collection:

1544

Views

49

Crossref

59

Web of Science

50

Scopus

1

CSCD

Altmetrics

Received: 04 May 2021
Revised: 29 July 2021
Accepted: 16 August 2021
Published: 02 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return