Graphical Abstract

For new renewable clean energy, triboelectric nanogenerators (TENGs) have shown great potential in response to the world energy crisis. Nevertheless, the alternating-current signal generated by a TENG needs to be converted into a direct-current signal to be effective in applications. Therefore, a power management circuit, comprising a clamp rectifier circuit and a mechanical switch, is proposed for the conversion and produces a signal having a low ripple coefficient. The power management circuit adopts a clamp circuit as the rectifier circuit to increase the rectified voltage, and reduces the loss resulted from the components by reducing the use of discrete components; the electronic switch in the buck regulator circuit is replaced with a mechanical switch to reduce cost and complexity. In a series of experiments, this power management circuit displayed a stable output voltage with a ripple voltage of 0.07 V, crest factor of 1.01, and ripple coefficient of 2.2%. The TENG provides a feasible method to generate stable electric energy and to supply power to low-consumption electronic devices.
Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.
Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.
Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.
Moreno-Brieva, F.; Merino, C. African international trade in the global value chain of lithium batteries. Mitig. Adapt. Strat. Glob. Change 2020, 25, 1031–1052.
Cheng, T. H.; Gao, Q.; Wang, Z. L. The current development and future outlook of triboelectric nanogenerators: A Survey of literature. Adv. Mater. Technol. 2019, 4, 1800588.
Ahmed, A.; Hassan, I.; Ibn-Mohammed, T.; Mostafa, H.; Reaney, I. M.; Koh, L. S. C.; Zu, J.; Wang, Z. L. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 2017, 10, 653–671.
Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.
Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.
Wang, Z. L.; Zhu, G.; Yang, Y.; Wang, S. H.; Pan, C. F. Progress in nanogenerators for portable electronics. Mater. Today 2012, 15, 532–543.
Liu, W. L.; Wang, Z.; Hu, C. G. Advanced designs for output improvement of triboelectric nanogenerator system. Mater. Today 2021, 45, 93–119.
Han, K.; Luo, J. J.; Feng, Y. W.; Lai, Q. S.; Bai, Y.; Tang, W.; Wang, Z. L. Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NOx. ACS Nano 2020, 14, 2751–2759.
Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.
Zhong, Y. M.; Zhao, H. B.; Guo, Y. C.; Rui, P. S.; Shi, S. W.; Zhang, W.; Liao, Y. L.; Wang, P. H.; Wang, Z. L. An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Adv. Mater. Technol. 2019, 4, 1900741.
Yin, M. F.; Yu, Y.; Wang, Y. Q.; Wang, Z.; Lu, X. H.; Cheng, T. H.; Wang, Z. L. Multi-plate structured triboelectric nanogenerator based on cycloidal displacement for harvesting hydroenergy. Extreme Mech. Lett. 2019, 33, 100576.
Quan, T.; Yang, Y. Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 2016, 9, 2226–2233.
Zhao, H. F.; Xiao, X.; Xu, P.; Zhao, T. C.; Song, L. G.; Pan, X. X.; Mi, J. C.; Xu, M. Y.; Wang, Z. L. Dual-tube helmholtz resonator-based triboelectric nanogenerator for highly efficient harvesting of acoustic energy. Adv. Energy Mater. 2019, 9, 1902824.
Jošt, M.; Lipovšek, B.; Glažar, B.; Al-Ashouri, A.; Brecl, K.; Matič, G.; Magomedov, A.; Getautis, V.; Topič, M.; Albrecht, S. Perovskite solar cells go outdoors: Field testing and temperature effects on energy yield. Adv. Energy Mater. 2020, 10, 2000454.
Lu, X. H.; Xu, Y. H.; Qiao, G. D.; Gao, Q.; Zhang, X. S.; Cheng, T. H.; Wang, Z. L. Triboelectric nanogenerator for entire stroke energy harvesting with bidirectional gear transmission. Nano Energy 2020, 72, 104726.
Ding, W. B.; Zhou, J. F.; Cheng, J.; Wang, Z. Z.; Guo, H. Y.; Wu, C. S.; Xu, S. X.; Wu, Z. Y.; Xie, X.; Wang, Z. L. TriboPump: A low-cost, hand-powered water disinfection system. Adv. Energy Mater. 2019, 9, 1901320.
Du, X. Y.; Li, N. W.; Liu, Y. B.; Wang, J. N.; Yuan, Z. Q.; Yin, Y. Y.; Cao, R.; Zhao, S. Y.; Wang, B.; Wang, Z. L. et al. Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy. Nano Res. 2018, 11, 2862–2871.
Graham, S. A.; Chandrarathna, S. C.; Patnam, H.; Manchi, P.; Lee, J. W.; Yu, J. S. Harsh environment-tolerant and robust triboelectric nanogenerators for mechanical-energy harvesting, sensing, and energy storage in a smart home. Nano Energy 2021, 80, 105547.
Kim, D.; Jin, I. K.; Choi, Y. K. Ferromagnetic nanoparticle-embedded hybrid nanogenerator for harvesting omnidirectional vibration energy. Nanoscale 2018, 10, 12276–12283.
Li, N. W.; Yin, Y. Y.; Du, X. Y.; Zhang, X. L.; Yuan, Z. Q.; Niu, H. D.; Cao, R.; Fan, W.; Zhang, Y.; Xu, W. H. et al. Triboelectric nanogenerator-enabled dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 802–810.
Niu, S. M.; Zhou, Y. S.; Wang, S. H.; Liu, Y.; Lin, L.; Bando, Y.; Wang, Z. L. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 2014, 8, 150–156.
Ouyang, Q. L.; Feng, X. L.; Kuang, S. Y.; Panwar, N.; Song, P. Y.; Yang, C. B.; Yang, G.; Hemu, X.; Zhang, G.; Yoon, H. S. et al. Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy 2019, 62, 610–619.
Qin, H. F.; Gu, G. Q.; Shang, W. Y.; Luo, H. C.; Zhang, W. H.; Cui, P.; Zhang, B.; Guo, J. M.; Cheng, G.; Du, Z. L. A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator. Nano Energy 2020, 68, 104372.
Ren, Z. Y.; Zheng, Q.; Wang, H. B.; Guo, H.; Miao, L. M.; Wan, J.; Xu, C.; Cheng, S. Y.; Zhang, H. X. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy 2020, 67, 104243.
Wang, F.; Tian, J. W.; Ding, Y. F.; Shi, Y. X.; Tao, X. L.; Wang, X. L.; Yang, Y.; Chen, X. Y.; Wang, Z. L. A universal managing circuit with stabilized voltage for maintaining safe operation of self-powered electronics system. iScience 2021, 24, 102502.
Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.
Xi, F. B.; Pang, Y. K.; Liu, G. X.; Wang, S. W.; Li, W.; Zhang, C.; Wang, Z. L. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 2019, 61, 1–9.
Xia, K. Q.; Zhu, Z. Y.; Fu, J. M.; Li, Y. M.; Chi, Y.; Zhang, H. Z.; Du, C. L.; Xu, Z. W. A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring. Nano Energy 2019, 60, 61–71.