Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
If a person comes into contact with pathogens on public facilities, there is a threat of contact (skin/wound) infections. More urgently, there are also reports about COVID-19 coronavirus contact infection, which once again reminds that contact infection is a very easily overlooked disease exposure route. Herein, we propose an innovative implantation strategy to fabricate a multi-walled carbon nanotube/polyvinyl alcohol (MWCNT/PVA, MCP) interpenetrating interface to achieve flexibility, anti-damage, and non-contact sensing electronic skin (E-skin). Interestingly, the MCP E-skin had a fascinating non-contact sensing function, which can respond to the finger approaching 0−20 mm through the spatial weak field. This non-contact sensing can be applied urgently to human–machine interactions in public facilities to block pathogen. The scratches of the fruit knife did not damage the MCP E-skin, and can resist chemical corrosion after hydrophobic treatment. In addition, the MCP E-skin was developed to real-time monitor the respiratory and cough for exercise detection and disease diagnosis. Notably, the MCP E-skin has great potential for emergency applications in times of infectious disease pandemics.
Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165.
Liu, Y. Q.; He, K.; Chen, G.; Leow, W. R.; Chen, X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 2017, 117, 12893–12941.
Xu, S. Y.; Vogt, D. M.; Hsu, W. H.; Osborne, J.; Walsh, T.; Foster, J. R.; Sullivan, S. K.; Smith, V. C.; Rousing, A. W.; Goldfield, E. C. et al. Biocompatible soft fluidic strain and force sensors for wearable devices. Adv. Funct. Mater. 2019, 29, 1807058.
Wang, C. F.; Pan, C. F.; Wang, Z. L. Electronic skin for closed-loop systems. ACS Nano 2019, 13, 12287–12293.
Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.
Niu, S. M.; Matsuhisa, N.; Beker, L.; Li, J. X.; Wang, S. H.; Wang, J. C.; Jiang, Y. W.; Yan, X. Z.; Yun, Y. J.; Burnett, W. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368.
Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.
Kang, J. H.; Tok, J. B. H.; Bao, Z. N. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150.
Yu, Y.; Nassar, J.; Xu, C. H.; Min, J. H.; Yang, Y. R.; Dai, A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 2020, 5, eaaz7946.
Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.
Leber, A.; Dong, C. Q.; Chandran, R.; Das Gupta, T.; Bartolomei, N.; Sorin, F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 2020, 3, 316–326.
Markvicka, E. J.; Bartlett, M. D.; Huang, X. N; Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018, 17, 618–624.
Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. N. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914.
Ong, S. W. X.; Tan, Y. K.; Chia, P. Y.; Lee, T. H.; Ng, O. T.; Wong, M. S. Y.; Marimuthu, K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020, 323, 1610–1612.
Han, Y.; Yang, H. L. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. J. Med. Virol. 2020, 92, 639–644.
Malm, H.; Navin, M. C. Pox parties for grannies? Chickenpox, exogenous boosting, and harmful injustices. Am. J. Bioeth. 2020, 20, 45–57.
Hoang, C. Q.; Nguyen, T. T. T.; Ho, N. X.; Nguyen, H. D.; Nguyen, A. B.; Nguyen, T. H. T.; Phan, H. C.; Phan, L. T. Transmission and serotype features of hand foot mouth disease in household contacts in Dong Thap, Vietnam. BMC Infect. Dis. 2019, 19, 933.
Mina, M. J.; Kula, T.; Leng, Y. M.; Li, M. M.; de Vries, R. D.; Knip, M.; Siljander, H.; Rewers, M.; Choy, D. F.; Wilson, M. S. et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science 2019, 366, 599–606.
Sun, H. L.; Zhao, Y.; Wang, C. F.; Zhou, K. K.; Yan, C.; Zheng, G. Q.; Huang, J. J.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 2020, 76, 105035.
Ye, T. L.; Wang, Q.; Tian, C. H.; Singh, R.; Zhang, Y. P.; Liu, Z. W.; Fang, X K.; He, D. Q. Multifunctional electronic skin based on perovskite intermediate gels. Adv. Electron. Mater. 2020, 6, 1901291.
Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Xu, G. W.; Wang, Q. W.; Liu, S. X.; Li, J.; Chen, C. J.; Yu, H. P.; Hu, L. B. A dynamic gel with reversible and tunable topological networks and performances. Matter 2020, 2, 390–403.
Qiao, Y. C.; Wang, Y. F.; Tian, H.; Li, M. R.; Jian, J. M.; Wei, Y. H.; Tian, Y.; Wang, D. Y.; Pang, Y.; Geng, X. S. et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018, 12, 8839–8846.
Won, S. M.; Wang, H. L.; Kim, B. H.; Lee, K.; Jang, H.; Kwon, K.; Han, M. D.; Crawford, K. E.; Li, H. B.; Lee, Y. et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019, 13, 10972–10979.
Mu, C. H.; Song, Y. Q.; Huang, W. T.; Ran, A.; Sun, R. J.; Xie, W. H.; Zhang, H. W. Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv. Funct. Mater. 2018, 28, 1707503.
Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 2016, 28, 930–935.
Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.
Wu, Y. H.; Deng, Z. F.; Peng, Z. F.; Zheng, R. M.; Liu, S. Q.; Xing, S. T.; Li, J. Y.; Huang, D. Q.; Liu, L. A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 2019, 29, 1903840.
Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020, 30, 1907893.
Kang, M.; Kim, J.; Jang, B.; Chae, Y.; Kim, J. H.; Ahn, J. H. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 2017, 11, 7950–7957.
Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z.; Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.
Feng, J.; Peng, L. L.; Wu, C. Z.; Sun, X.; Hu, S. L.; Lin, C. W.; Dai, J.; Yang, J. L.; Xie, Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 2012, 24, 1969–1974.
Jiao, J. P.; Li, L.; Wu, B.; He, C. F. Novel capacitive proximity sensors for assessing the aging of composite insulators. Sens. Actuators A Phys. 2017, 253, 75–84.
Thostenson, E. T.; Ren, Z. F.; Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.
Dasbach, M.; Pyschik, M.; Lehmann, V.; Parey, K.; Rhinow, D.; Reinhardt, H. M.; Hampp, N. A. Assembling carbon nanotube architectures. ACS Nano 2020, 14, 8181–8190.
Halima, N. B. Poly (vinyl alcohol): Review of its promising applications and insights into biodegradation. RSC Adv. 2016, 6, 39823–39832.
Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.
Wang, Y.; Zhang, L. N.; Lu, A. Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. J. Mater. Chem. A 2020, 8, 13935–13941.
Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, 1706738.
Rance, G. A.; Marsh, D. H.; Nicholas, R. J.; Khlobystov, A. N. UV-vis absorption spectroscopy of carbon nanotubes: Relationship between the π-electron plasmon and nanotube diameter. Chem. Phys. Lett. 2010, 493, 19–23.
Kaiser, A. B.; Flanagan, G. U.; Stewart, D. M.; Beaglehole, D. Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synth. Met. 2001, 117, 67–73.
Kaiser, A. B. Thermoelectric power and conductivity of heterogeneous conducting polymers. Phys. Rev. B 1989, 40, 2806–2813.
Li, Z. D.; Liu, H.; Ouyang, C.; Wee, W. H.; Cui, X. Y.; Lu, T. J.; Pingguan‐Murphy, B.; Li, F.; Xu, F. Recent advances in pen-based writing electronics and their emerging applications. Adv. Funct. Mater. 2016, 26, 165–180.
Wang, W. Y.; Ouaras, K.; Rutz, A. L.; Li, X.; Gerigk, M.; Naegele, T. E.; Malliaras, G. G.; Huang, Y. Y. S. Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci. Adv. 2020, 6, eaba0931.
Shin, J.; Jeong, B.; Kim, J.; Nam, V. B.; Yoon, Y.; Jung, J.; Hong, S.; Lee, H.; Eom, H.; Yeo, J. et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 2020, 32, 1905527.
Rahimabady, M.; Tan, C. Y.; Tan, S. Y.; Chen, S.; Zhang, L.; Chen, Y. F.; Yao, K.; Zang, K. Y.; Humbert, A.; Soccol, D. et al. Dielectric nanocomposite of diphenylethylenediamine and P-type multi-walled carbon nanotube for capacitive carbon dioxide sensors. Sens. Actuators B Chem. 2017, 243, 596–601.
Liao, L.; Xiao, W.; Zhao, M.; Yu, X. Z.; Wang, H. T.; Wang, Q. Q.; Chu, S.; Cui, Y. Can N95 respirators be reused after disinfection? How many times? ACS Nano 2020, 14, 6348–6356.