AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection

Duan-Chao Wang1Hou-Yong Yu1,2( )Lurong Jiang2Dongming Qi1Xinxing Zhang3( )Lumin Chen1Wentao Lv2Weiqiang Xu1Kam Chiu Tam4
National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
College of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University, Chengdu 610065, China
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
Show Author Information

Graphical Abstract

Abstract

If a person comes into contact with pathogens on public facilities, there is a threat of contact (skin/wound) infections. More urgently, there are also reports about COVID-19 coronavirus contact infection, which once again reminds that contact infection is a very easily overlooked disease exposure route. Herein, we propose an innovative implantation strategy to fabricate a multi-walled carbon nanotube/polyvinyl alcohol (MWCNT/PVA, MCP) interpenetrating interface to achieve flexibility, anti-damage, and non-contact sensing electronic skin (E-skin). Interestingly, the MCP E-skin had a fascinating non-contact sensing function, which can respond to the finger approaching 0−20 mm through the spatial weak field. This non-contact sensing can be applied urgently to human–machine interactions in public facilities to block pathogen. The scratches of the fruit knife did not damage the MCP E-skin, and can resist chemical corrosion after hydrophobic treatment. In addition, the MCP E-skin was developed to real-time monitor the respiratory and cough for exercise detection and disease diagnosis. Notably, the MCP E-skin has great potential for emergency applications in times of infectious disease pandemics.

References

1

Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165.

2

Liu, Y. Q.; He, K.; Chen, G.; Leow, W. R.; Chen, X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 2017, 117, 12893–12941.

3

Xu, S. Y.; Vogt, D. M.; Hsu, W. H.; Osborne, J.; Walsh, T.; Foster, J. R.; Sullivan, S. K.; Smith, V. C.; Rousing, A. W.; Goldfield, E. C. et al. Biocompatible soft fluidic strain and force sensors for wearable devices. Adv. Funct. Mater. 2019, 29, 1807058.

4

Wang, C. F.; Pan, C. F.; Wang, Z. L. Electronic skin for closed-loop systems. ACS Nano 2019, 13, 12287–12293.

5

Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

6

Niu, S. M.; Matsuhisa, N.; Beker, L.; Li, J. X.; Wang, S. H.; Wang, J. C.; Jiang, Y. W.; Yan, X. Z.; Yun, Y. J.; Burnett, W. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368.

7

Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

8

Kang, J. H.; Tok, J. B. H.; Bao, Z. N. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150.

9

Yu, Y.; Nassar, J.; Xu, C. H.; Min, J. H.; Yang, Y. R.; Dai, A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 2020, 5, eaaz7946.

10

Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.

11

Leber, A.; Dong, C. Q.; Chandran, R.; Das Gupta, T.; Bartolomei, N.; Sorin, F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 2020, 3, 316–326.

12

Markvicka, E. J.; Bartlett, M. D.; Huang, X. N; Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018, 17, 618–624.

13

Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. N. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914.

14

Ong, S. W. X.; Tan, Y. K.; Chia, P. Y.; Lee, T. H.; Ng, O. T.; Wong, M. S. Y.; Marimuthu, K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020, 323, 1610–1612.

15

Han, Y.; Yang, H. L. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. J. Med. Virol. 2020, 92, 639–644.

16
Kaper, J. B.; Nataro, J. P.; Mobley, H. L. T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140.
17
Kretschmer, D.; Gleske, A. K.; Rautenberg, M.; Wang, R.; Köberle, M.; Bohn, E.; Schöneberg, T.; Rabiet, M. J.; Boulay, F.; Klebanoff, S. J. et al. Human formyl peptide receptor 2 senses highly pathogenicStaphylococcus aureus. Cell Host Microbe 2010, 7, 463–473.
18
Hay, R.; Bendeck, S. E.; Chen, S.; Estrada, R.; Haddix, A.; McLeod, T.; Mahé, A. Skin diseases. In Disease Control Priorities in Developing Countries. Jamison, D. T.; Breman, J. G., Eds.; World Bank Publications: Washington DC, 2006, pp 707–722.
19

Malm, H.; Navin, M. C. Pox parties for grannies? Chickenpox, exogenous boosting, and harmful injustices. Am. J. Bioeth. 2020, 20, 45–57.

20

Hoang, C. Q.; Nguyen, T. T. T.; Ho, N. X.; Nguyen, H. D.; Nguyen, A. B.; Nguyen, T. H. T.; Phan, H. C.; Phan, L. T. Transmission and serotype features of hand foot mouth disease in household contacts in Dong Thap, Vietnam. BMC Infect. Dis. 2019, 19, 933.

21

Mina, M. J.; Kula, T.; Leng, Y. M.; Li, M. M.; de Vries, R. D.; Knip, M.; Siljander, H.; Rewers, M.; Choy, D. F.; Wilson, M. S. et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science 2019, 366, 599–606.

22

Sun, H. L.; Zhao, Y.; Wang, C. F.; Zhou, K. K.; Yan, C.; Zheng, G. Q.; Huang, J. J.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 2020, 76, 105035.

23

Ye, T. L.; Wang, Q.; Tian, C. H.; Singh, R.; Zhang, Y. P.; Liu, Z. W.; Fang, X K.; He, D. Q. Multifunctional electronic skin based on perovskite intermediate gels. Adv. Electron. Mater. 2020, 6, 1901291.

24

Zhao, D. W.; Zhu, Y.; Cheng, W. K.; Xu, G. W.; Wang, Q. W.; Liu, S. X.; Li, J.; Chen, C. J.; Yu, H. P.; Hu, L. B. A dynamic gel with reversible and tunable topological networks and performances. Matter 2020, 2, 390–403.

25

Qiao, Y. C.; Wang, Y. F.; Tian, H.; Li, M. R.; Jian, J. M.; Wei, Y. H.; Tian, Y.; Wang, D. Y.; Pang, Y.; Geng, X. S. et al. Multilayer graphene epidermal electronic skin. ACS Nano 2018, 12, 8839–8846.

26

Won, S. M.; Wang, H. L.; Kim, B. H.; Lee, K.; Jang, H.; Kwon, K.; Han, M. D.; Crawford, K. E.; Li, H. B.; Lee, Y. et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 2019, 13, 10972–10979.

27

Mu, C. H.; Song, Y. Q.; Huang, W. T.; Ran, A.; Sun, R. J.; Xie, W. H.; Zhang, H. W. Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv. Funct. Mater. 2018, 28, 1707503.

28

Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 2016, 28, 930–935.

29

Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

30

Wu, Y. H.; Deng, Z. F.; Peng, Z. F.; Zheng, R. M.; Liu, S. Q.; Xing, S. T.; Li, J. Y.; Huang, D. Q.; Liu, L. A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 2019, 29, 1903840.

31

Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020, 30, 1907893.

32

Kang, M.; Kim, J.; Jang, B.; Chae, Y.; Kim, J. H.; Ahn, J. H. Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 2017, 11, 7950–7957.

33

Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z.; Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.

34

Feng, J.; Peng, L. L.; Wu, C. Z.; Sun, X.; Hu, S. L.; Lin, C. W.; Dai, J.; Yang, J. L.; Xie, Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 2012, 24, 1969–1974.

35

Jiao, J. P.; Li, L.; Wu, B.; He, C. F. Novel capacitive proximity sensors for assessing the aging of composite insulators. Sens. Actuators A Phys. 2017, 253, 75–84.

36

Thostenson, E. T.; Ren, Z. F.; Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.

37

Dasbach, M.; Pyschik, M.; Lehmann, V.; Parey, K.; Rhinow, D.; Reinhardt, H. M.; Hampp, N. A. Assembling carbon nanotube architectures. ACS Nano 2020, 14, 8181–8190.

38

Halima, N. B. Poly (vinyl alcohol): Review of its promising applications and insights into biodegradation. RSC Adv. 2016, 6, 39823–39832.

39

Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

40

Wang, Y.; Zhang, L. N.; Lu, A. Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. J. Mater. Chem. A 2020, 8, 13935–13941.

41

Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, 1706738.

42
Pizzi, A.; Mittal, K. L. Handbook of Adhesive Technology; 3rd ed. CRC Press: Boca Raton, 2017.
43

Rance, G. A.; Marsh, D. H.; Nicholas, R. J.; Khlobystov, A. N. UV-vis absorption spectroscopy of carbon nanotubes: Relationship between the π-electron plasmon and nanotube diameter. Chem. Phys. Lett. 2010, 493, 19–23.

44

Kaiser, A. B.; Flanagan, G. U.; Stewart, D. M.; Beaglehole, D. Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synth. Met. 2001, 117, 67–73.

45

Kaiser, A. B. Thermoelectric power and conductivity of heterogeneous conducting polymers. Phys. Rev. B 1989, 40, 2806–2813.

46

Li, Z. D.; Liu, H.; Ouyang, C.; Wee, W. H.; Cui, X. Y.; Lu, T. J.; Pingguan‐Murphy, B.; Li, F.; Xu, F. Recent advances in pen-based writing electronics and their emerging applications. Adv. Funct. Mater. 2016, 26, 165–180.

47

Wang, W. Y.; Ouaras, K.; Rutz, A. L.; Li, X.; Gerigk, M.; Naegele, T. E.; Malliaras, G. G.; Huang, Y. Y. S. Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci. Adv. 2020, 6, eaba0931.

48

Shin, J.; Jeong, B.; Kim, J.; Nam, V. B.; Yoon, Y.; Jung, J.; Hong, S.; Lee, H.; Eom, H.; Yeo, J. et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 2020, 32, 1905527.

49

Rahimabady, M.; Tan, C. Y.; Tan, S. Y.; Chen, S.; Zhang, L.; Chen, Y. F.; Yao, K.; Zang, K. Y.; Humbert, A.; Soccol, D. et al. Dielectric nanocomposite of diphenylethylenediamine and P-type multi-walled carbon nanotube for capacitive carbon dioxide sensors. Sens. Actuators B Chem. 2017, 243, 596–601.

50

Liao, L.; Xiao, W.; Zhao, M.; Yu, X. Z.; Wang, H. T.; Wang, Q. Q.; Chu, S.; Cui, Y. Can N95 respirators be reused after disinfection? How many times? ACS Nano 2020, 14, 6348–6356.

Nano Research
Pages 2616-2625
Cite this article:
Wang D-C, Yu H-Y, Jiang L, et al. Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection. Nano Research, 2022, 15(3): 2616-2625. https://doi.org/10.1007/s12274-021-3831-z
Topics:

959

Views

21

Crossref

23

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 27 May 2021
Revised: 13 August 2021
Accepted: 19 August 2021
Published: 30 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return