AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation

Yang Geng1,§Kai Jiao1,2,§Xu Liu1Peijin Ying1Omololu Odunmbaku1Yaoxin Zhang3Swee Ching Tan3Ling Li4Wei Zhang5Meng Li1( )
MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Department of Materials Science and Engineering, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, National University of Singapore, Singapore 117573, Singapore
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

§ Yang Geng and Kai Jiao contributed equally to this work.

Show Author Information

Graphical Abstract

This review provides a comprehensive account of various bio-derived and bio-inspired materials utilized in the field of interfacial solar steam generation (ISSG) system and also concludes with suggestions regarding further research directions for performance enhancement through the rational selection and design of bio-derived/bio-inspired materials in this field.

Abstract

Interfacial solar steam generation (ISSG) system has attracted extensive attention as a sustainable desalination technology because of its cost efficiency and zero fossil-energy consumption. Aiming at optimizing the desalination properties, materials and system design have been the current research focus. Recently, many novel bio-derived/bio-inspired design strategies were proposed owing to their highly efficient structures inherited from nature, which were fine-tuned over eons of evolution, as well as their low cost and ease of treatment. In this review, we are going to systematically report recent progress of various bio-derived/bio-inspired strategies in terms of optical design, wetting, thermal management, and overall system design, presenting an overview of the current challenges of bio-inspired materials in ISSG system and other application fields. This article is intended to provide a comprehensive review of recent developments about bio-derived/bio-inspired materials in ISSG system and conclude with suggestions regarding further research directions for performance enhancement through design of bio-derived/bio-inspired materials.

References

1

Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Res. 2009, 43, 2317–2348.

2

Gude, V. G.; Nirmalakhandan, N.; Deng, S. G. Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 2010, 14, 2641–2654.

3

Kalista, B.; Shin, H.; Cho, J.; Jang, A. Current development and future prospect review of freeze desalination. Desalination. 2018, 447, 167–181.

4

Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science. 2011, 333, 712–717.

5

Qin, M. H.; Deshmukh, A.; Epsztein, R.; Patel, S. K.; Owoseni, O. M.; Walker, W. S.; Elimelech, M. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination. 2019, 455, 100–114.

6

Fujioka, R.; Wang, L. P.; Dodbiba, G.; Fujita, T. Application of progressive freeze-concentration for desalination. Desalination. 2013, 319, 33–37.

7

Oren, Y. Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review). Desalination. 2008, 228, 10–29.

8

Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388–1442.

9

Ishii, S.; Sugavaneshwar, R. P.; Chen, K.; Dao, T. D.; Nagao, T. Solar water heating and vaporization with silicon nanoparticles at mie resonances. Opt. Mater. Express. 2016, 6, 640–648.

10

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. 2015, 348, 1234–1237.

11

Mahian, O.; Kianifar, A.; Kalogirou, S. A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 2013, 57, 582–594.

12

Park, N. G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today. 2015, 18, 65–72.

13

Wang, X. Z.; He, Y. R.; Cheng, G.; Shi, L.; Liu, X.; Zhu, J. Q. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conver. Manag. 2016, 130, 176–183.

14

Liu, Z. P.; Yang, Z. J.; Huang, X. C.; Xuan, C. Y.; Xie, J. H.; Fu, H. D.; Wu, Q. X.; Zhang, J. M.; Zhou, X. C.; Liu, Y. Z. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. J. Mater. Chem. A. 2017, 5, 20044–20052.

15

Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

16

Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy. 2018, 3, 1031–1041.

17

Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

18

Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

19

Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.

20

Fang, J.; Liu, Q. L.; Zhang, W.; Gu, J. J.; Su, Y. S.; Su, H. L.; Guo, C. P.; Zhang, D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. J. Mater. Chem. A. 2017, 5, 17817–17821.

21

Liu, F. H.; Zhao, B. Y.; Wu, W. P.; Yang, H. Y.; Ning, Y. S.; Lai, Y. J.; Bradley, R. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Adv. Funct. Mater. 2018, 28, 1803266.

22

Yang, L.; Chen, G. L.; Zhang, N.; Xu, Y. X.; Xu, X. F. Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification. ACS Sustainable Chem. Eng. 2019, 7, 19311–19320.

23

Wu, L. Y.; Ren, W. T.; Song, Y. Q.; Xin, M. J.; Niu, S. C.; Han, Z. W. High light absorption properties and optical structures in butterfly Heliophorus ila Lvcaenidae wing scales. RSC Adv. 2015, 5, 46011–46016.

24

Wang, T. C.; Kong, S.; Jia, Y.; Chang, L. J.; Wong, C.; Xiong, D. S. Synthesis and thermal conductivities of the biomorphic Al2O3 fibers derived from silk template. Int. J. Appl. Ceram. Technol. 2013, 10, 285–292.

25

Kokalj, T.; Cho, H.; Jenko, M.; Lee, L. P. Biologically inspired porous cooling membrane using arrayed-droplets evaporation. Appl. Phys. Lett. 2010, 96, 163703.

26

Shi, N. N.; Tsai, C. C.; Camino, F.; Bernard, G. D.; Yu, N. F.; Wehner, R. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science. 2015, 349, 298–301.

27

Zhang, Z. H.; Chen, Z. Y.; Sun, L. Y.; Zhang, X. X.; Zhao, Y. J. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 2019, 12, 1579–1584.

28

Tian, M.; Chen, X.; Sun, S. T.; Yang, D.; Wu, P. Y. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Res. 2019, 12, 1121–1127.

29

Wang, P. W.; Zhao, T. Y.; Bian, R. X.; Wang, G. Y.; Liu, H. Robust superhydrophobic carbon nanotube film with lotus leaf mimetic multiscale hierarchical structures. ACS Nano. 2017, 11, 12385–12391.

30

Du, S.; Zhou, N. Y.; Gao, Y. J.; Xie, G.; Du, H. Y.; Jiang, H.; Zhang, L. B.; Tao, J.; Zhu, J. T. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. 2020, 13, 2525–2533.

31

Liu, H.; Chen, C. J.; Chen, G.; Kuang, Y. D.; Zhao, X. P.; Song, J. W.; Jia, C.; Xu, X.; Hitz, E.; Xie, H. et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design. Adv. Energy Mater. 2018, 8, 1701616.

32

Luo, X.; Huang, C. L.; Liu, S.; Zhong, J. X. High performance of carbon-particle/bulk-wood bi-layer system for solar steam generation. Int. J. Energy Res. 2018, 42, 4830–4839.

33

Fang, J.; Liu, J.; Gu, J. J.; Liu, Q. L.; Zhang, W.; Su, H. L.; Zhang, D. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation. Chem. Mater. 2018, 30, 6217–6221.

34

Zhu, M. M.; Yu, J. L.; Ma, C. L.; Zhang, C. Y.; Wu, D. X.; Zhu, H. T. Carbonized daikon for high efficient solar steam generation. Sol. Energy Mater. Sol. Cells. 2019, 191, 83–90.

35

Wu, X.; Wu, L. M.; Tan, J.; Chen, G. Y.; Owens, G.; Xu, H. L. Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy. J. Mater. Chem. A. 2018, 6, 12267–12274.

36

Elsheikh, A. H.; Sharshir, S. W.; Ali, M. K. A.; Shaibo, J.; Edreis, E. M. A.; Abdelhamid, T.; Du, C.; Zhang, H. O. Thin film technology for solar steam generation: A new dawn. Sol. Energy. 2019, 177, 561–575.

37

Wu, X.; Chen, G. Y.; Owens, G.; Chu, D. W.; Xu, H. L. Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Mater. Today Energy. 2019, 12, 277–296.

38

Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Direct solar steam generation system for clean water production. Energy Storage Mater. 2019, 18, 429–446.

39

Chen, C. J.; Kuang, Y. D.; Hu, L. B. Challenges and opportunities for solar evaporation. Joule. 2019, 3, 683–718.

40

Xie, Z. J.; Peng, Y. P.; Yu, L.; Xing, C. Y.; Qiu, M.; Hu, J. Q.; Zhang, H. Solar-Inspired water purification based on emerging 2D materials: Status and challenges. Sol. RRL. 2020, 4, 1900400.

41

Liu, G. H.; Chen, T.; Xu, J. L.; Li, G.; Wang, K. Y. Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A. 2020, 8, 513–531.

42

Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy. 2019, 57, 507–518.

43

Li, J. L.; Du, M. H.; Lv, G. X.; Zhou, L.; Li, X. Q.; Bertoluzzi, L.; Liu, C. H.; Zhu, S. N.; Zhu, J. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv. Mater. 2018, 30, 1805159.

44

Wang, Z. H.; Liu, Y. M.; Tao, P.; Shen, Q. C.; Yi, N.; Zhang, F. Y.; Liu, Q. L.; Song, C. Y.; Zhang, D.; Shang, W. et al. Bio-Inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small. 2014, 10, 3234–3239.

45

Li, Z. T.; Wang, C. B.; Lei, T.; Ma, H. L.; Su, J. B.; Ling, S.; Wang, W. Arched bamboo charcoal as interfacial solar steam generation integrative device with enhanced water purification capacity. Adv. Sustain. Syst. 2019, 3, 1800144.

46

Li, X. Q.; Lin, R. X.; Ni, G.; Xu, N.; Hu, X. Z.; Zhu, B.; Lv, G. X.; Li, J. L.; Zhu, S. N.; Zhu, J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 2018, 5, 70–77.

47

Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

48

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

49

Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 2009, 9, 1139–1146.

50

Chen, M. L.; Wu, Y. F.; Song, W. X.; Mo, Y. C.; Lin, X. K.; He, Q.; Guo, B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale. 2018, 10, 6186–6193.

51

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 2016, 10, 393–398.

52

Chang, C.; Yang, C.; Liu, Y. M.; Tao, P.; Song, C. Y.; Shang, W.; Wu, J. B.; Deng, T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Appl. Mater. Interfaces. 2016, 8, 23412–23418.

53

Ying, P. J.; Li, M.; Yu, F. L.; Geng, Y.; Zhang, L. Y.; He, J. J.; Zheng, Y. J.; Chen, R. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl. Mater. Interfaces. 2020, 12, 32880–32887.

54

Yi, L. C.; Ci, S. Q.; Luo, S. L.; Shao, P.; Hou, Y.; Wen, Z. H. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy. 2017, 41, 600–608.

55

Lu, Q. C.; Yang, Y.; Feng, J. R.; Wang, X. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Sol. RRL. 2019, 3, 1800277.

56

Irshad, M. S.; Wang, X. B.; Abbasi, M. S.; Arshad, N.; Chen, Z. H.; Guo, Z. Z.; Yu, L.; Qian, J. W.; You, J.; Mei, T. Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation. ACS Sustainable Chem. Eng. 2021, 9, 3887–3900.

57

Li, B.; Wang, Q.; Zou, R. J.; Liu, X. J.; Xu, K. B.; Li, W. Y.; Hu, J. Q. Cu7.2S4 nanocrystals: A novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale. 2014, 6, 3274–3282.

58

Song, C. Q.; Li, T. C.; Guo, W.; Gao, Y.; Yang, C. Y.; Zhang, Q.; An, D.; Huang, W. C.; Yan, M.; Guo, C. S. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New J. Chem. 2018, 42, 3175–3179.

59

Liu, K. K.; Jiang, Q. S.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces. 2017, 9, 7675–7681.

60

Dongare, P. D.; Alabastri, A.; Pedersen, S.; Zodrow, K. R.; Hogan, N. J.; Neumann, O.; Wu, J. J.; Wang, T. X.; Deshmukh, A.; Elimelech, M. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. USA. 2017, 114, 6936–6941.

61

Xu, W. C.; Hu, X. Z.; Zhuang, S. D.; Wang, Y. X.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 2018, 8, 1702884.

62

Liu, Z. J.; Song, H. M.; Ji, D. X.; Li, C. Y.; Cheney, A.; Liu, Y. H.; Zhang, N.; Zeng, X.; Chen, B. R.; Gao, J. et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Glob. Chall. 2017, 1, 1600003.

63

Liu, Y. M.; Chen, J. W.; Guo, D. W.; Cao, M. Y.; Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Appl. Mater. Interfaces. 2015, 7, 13645–13652.

64

Wang, Y. C.; Zhang, L. B.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chem. Eng. 2016, 4, 1223–1230.

65

Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano. 2017, 11, 5087–5093.

66

Fu, Y.; Wang, G.; Ming, X.; Liu, X. H.; Hou, B. F.; Mei, T.; Li, J. H.; Wang, J. Y.; Wang, X. B. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon. 2018, 130, 250–256.

67

Yang, Y.; Zhao, R. Q.; Zhang, T. F.; Zhao, K.; Xiao, P. S.; Ma, Y. F.; Ajayan, P. M.; Shi, G. Q.; Chen, Y. S. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano. 2018, 12, 829–835.

68

Irshad, M. S.; Wang, X. B.; Abbas, A.; Yu, F.; Li, J. H.; Wang, J. Y.; Mei, T.; Qian, J. W.; Wu, S. L.; Javed, M. Q. Salt-resistant carbon dots modified solar steam system enhanced by chemical advection. Carbon. 2021, 176, 313–326.

69

Geng, Y.; Sun, W.; Ying, P. J.; Zheng, Y. J.; Ding, J.; Sun, K.; Li, L.; Li, M. Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation. Adv. Funct. Mater. 2021, 31, 2007648.

70

Mu, P.; Bai, W.; Fan, Y. K.; Zhang, Z.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Conductive hollow kapok fiber-PPy monolithic aerogels with excellent mechanical robustness for efficient solar steam generation. J. Mater. Chem. A. 2019, 7, 9673–9679.

71

Wang, C. Z.; Wang, Y. C.; Song, X. J.; Huang, M. H.; Jiang, H. Q. A facile and general strategy to deposit polypyrrole on various substrates for efficient solar-driven evaporation. Adv. Sustain. Syst. 2019, 3, 1800108.

72

Wang, X.; Liu, Q. C.; Wu, S. Y.; Xu, B. X.; Xu, H. X. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 2019, 31, 1807716.

73

Jia, J.; Liang, W. D.; Sun, H. X.; Zhu, Z. Q.; Wang, C. J.; Li, A. Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency. Chem. Eng. J. 2019, 361, 999–1006.

74

Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

75

Chen, Q. M.; Pei, Z. Q.; Xu, Y. S.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. A durable monolithic polymer foam for efficient solar steam generation. Chem. Sci. 2018, 9, 623–628.

76

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

77

Cao, S. S.; Jiang, Q. S.; Wu, X. H.; Ghim, D.; Derami, H. G.; Chou, P. I.; Jun, Y. S.; Singamaneni, S. Advances in solar evaporator materials for freshwater generation. J. Mater. Chem. A. 2019, 7, 24092–24123.

78

Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

79

Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA. 2016, 113, 13953–13958.

80

Geng, Y.; Zhang, K. Z.; Yang, K.; Ying, P. J.; Hu, L. J.; Ding, J.; Xue, J. M.; Sun, W.; Sun, K.; Li, M. Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. Carbon. 2019, 155, 25–33.

81

Zhang, W.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Liu, R. P.; Qu, J. H. Capillary-flow-optimized heat localization induced by an air-enclosed three-dimensional hierarchical network for elevated solar evaporation. ACS Appl. Mater. Interfaces. 2019, 11, 9974–9983.

82

Tahir, Z.; Kim, S.; Ullah, F.; Lee, S.; Lee, J. H.; Park, N. W.; Seong, M. J.; Lee, S. K.; Ju, T. S.; Park, S. et al. Highly efficient solar steam generation by glassy carbon foam coated with two-dimensional metal chalcogenides. ACS Appl. Mater. Interfaces. 2020, 12, 2490–2496.

83

Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

84

Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Jiang, L.; Qu, L. T. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A. 2018, 6, 15303–15309.

85

Zhang, P. P.; Liao, Q. H.; Zhang, T.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Li, C.; Jiang, L.; Qu, L. T. High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight. Nano Energy. 2018, 46, 415–422.

86

Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K.; Fujishima, A.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

87

Ni, G.; Zandavi, S. H.; Javid, S. M.; Boriskina, S. V.; Cooper, T. A.; Chen, G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 2018, 11, 1510–1519.

88

Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Wang, X. Q.; Ho, G. W. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 2018, 8, 1702149.

89

Zhong, J. X.; Huang, C. L.; Wu, D. X.; Lin, Z. Z. Influence factors of the evaporation rate of a solar steam generation system: A numerical study. Int. J. Heat Mass Transf. 2019, 128, 860–864.

90

Jiang, L. L.; Sheng, L. Z.; Fan, Z. J. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China Mater. 2018, 61, 133–158.

91

Tao, P.; Shang, W.; Song, C. Y.; Shen, Q. C.; Zhang, F. Y.; Luo, Z.; Yi, N.; Zhang, D.; Deng, T. Bioinspired engineering of thermal materials. Adv. Mater. 2015, 27, 428–463.

92

Lai, M.; Kulak, A. N.; Law, D.; Zhang, Z. B.; Meldrum, F. C.; Riley, D. J. Profiting from nature: Macroporous copper with superior mechanical properties. Chem. Commun. 2007, 3547–3549.

93
Sun, P.; Zhang, W.; Zada, I.; Zhang, Y.; Gu, J.; Liu, Q.; Su, H.; Pantelić, D.; Jelenković, B.; Zhang, D. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation. ACS Appl. Mater. Interfaces. 2020, 12, 2171–2179.https://doi.org/10.1021/acsami.9b11738
94

Xue, G. B.; Liu, K.; Chen, Q.; Yang, P. H.; Li, J.; Ding, T. P.; Duan, J. J.; Qi, B.; Zhou, J. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces. 2017, 9, 15052–15057.

95

Chen, C. J.; Li, Y. J.; Song, J. W.; Yang, Z.; Kuang, Y. D.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J. Y. et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29, 1701756.

96

Wu, X.; Chen, G. Y.; Zhang, W.; Liu, X. L.; Xu, H. L. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 2017, 1, 1700046.

97

Chen, Z. J.; Dang, B.; Luo, X. F.; Li, W.; Li, J.; Yu, H. P.; Liu, S. X.; Li, S. J. Deep eutectic solvent-assisted in situ wood delignification: A promising strategy to enhance the efficiency of wood-based solar steam generation devices. ACS Appl. Mater. Interfaces. 2019, 11, 26032–26037.

98

Guo, D. F.; Yang, X. C. Highly efficient solar steam generation of low cost TiN/bio-carbon foam. Sci. China Mater. 2019, 62, 711–718.

99

Zhu, M. W.; Li, Y. J.; Chen, F. J.; Zhu, X. Y.; Dai, J. Q.; Li, Y. F.; Yang, Z.; Yan, X. J.; Song, J. W.; Wang, Y. B. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028.

100

He, F.; Han, M. C.; Zhang, J.; Wang, Z. X.; Wu, X. C.; Zhou, Y. Y.; Jiang, L. F.; Peng, S. Q.; Li, Y. X. A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation. Nano Energy. 2020, 71, 104650.

101

Chen, T. J.; Wu, Z. Z.; Liu, Z. Y.; Aladejana, J. T.; Wang, X. D.; Niu, M.; Wei, Q. H.; Xie, Y. Q. Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS Appl. Mater. Interfaces. 2020, 12, 19511–19518.

102

Long, Y. J.; Huang, S. L.; Yi, H.; Chen, J. Q.; Wu, J. H.; Liao, Q. F.; Liang, H. W.; Cui, H. Z.; Ruan, S. C.; Zeng, Y. J. Carrot-inspired solar thermal evaporator. J. Mater. Chem. A. 2019, 7, 26911–26916.

103

Zhang, Y. X.; Ravi, S. K.; Vaghasiya, J. V.; Tan, S. C. A barbeque-analog route to carbonize moldy bread for efficient steam generation. iScience. 2018, 3, 31–39.

104

Zhang, Y. X.; Ravi, S. K.; Tan, S. C. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy. 2019, 65, 104006.

105

Han, X.; Wang, W. P.; Zuo, K. C.; Chen, L.; Yuan, L.; Liang, J.; Li, Q. L.; Ajayan, P. M.; Zhao, Y.; Lou, J. Bio-derived ultrathin membrane for solar driven water purification. Nano Energy. 2019, 60, 567–575.

106

Fang, Q.; Li, T. T.; Chen, Z. M.; Lin, H. B.; Wang, P.; Liu, F. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl. Mater. Interfaces. 2019, 11, 10672–10679.

107

Sun, Z. Z.; Li, W. Z.; Song, W. L.; Zhang, L. C.; Wang, Z. K. A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: Ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration. J. Mater. Chem. A. 2020, 8, 349–357.

108

Khajevand, M.; Azizian, S.; Boukherroub, R. Naturally abundant green moss for highly efficient solar thermal generation of clean water. ACS Appl Mater Interfaces. 2021, 13, 31680–31690.

109

Zheng, Z. M.; Li, H. Y.; Zhang, X. D.; Jiang, H.; Geng, X. M.; Li, S. M.; Tu, H. Y.; Cheng, X. R.; Yang, P.; Wan, Y. F. High-absorption solar steam device comprising Au@Bi2MoO6-CDs: Extraordinary desalination and electricity generation. Nano Energy. 2020, 68, 104298.

110

Wang, H. Q.; Zhang, C.; Zhang, Z. H.; Zhou, B.; Shen, J.; Du, A. Artificial trees inspired by Monstera for highly efficient solar steam generation in both normal and weak light environments. Adv. Funct. Mater. 2020, 30, 2005513.

111

Cheng, H. Y.; Liu, X. H.; Zhang, L. X.; Hou, B. F.; Yu, F.; Shi, Z. X.; Wang, X. B. Self-floating Bi2S3/poly (vinylidene fluoride) composites on polyurethane sponges for efficient solar water purification. Sol. Energy Mater. Sol. Cells. 2019, 203, 110127.

112

Li, K. R.; Chang, T. H.; Li, Z. P.; Yang, H. T.; Fu, F. F.; Li, T. T.; Ho, J. S.; Chen, P. Y. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 2019, 9, 1901687.

113

Yang, L.; Zou, Y.; Xia, W.; Li, H. T.; He, X. Y.; Zhou, Y.; Liu, X. H.; Zhang, C. Q.; Li, Y. W. Tea stain-inspired solar energy harvesting polyphenolic nanocoatings with tunable absorption spectra. Nano Res. 2021, 14, 969–975.

114

Lou, J. W.; Liu, Y.; Wang, Z. Y.; Zhao, D. W.; Song, C. Y.; Wu, J. B.; Dasgupta, N.; Zhang, W.; Zhang, D.; Tao, P. et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Appl. Mater. Interfaces. 2016, 8, 14628–14636.

115

Liu, Y.; Lou, J. W.; Ni, M. T.; Song, C. Y.; Wu, J. B.; Dasgupta, N. P.; Tao, P.; Shang, W.; Deng, T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Appl. Mater. Interfaces. 2016, 8, 772–779.

116

Xu, X. H.; Ozden, S.; Bizmark, N.; Arnold, C. B.; Datta, S. S.; Priestley, R. D. A bioinspired elastic hydrogel for solar-driven water purification. Adv Mater. 2021, 33, 2007833.

117

Wheeler, T. D.; Stroock, A. D. The transpiration of water at negative pressures in a synthetic tree. Nature. 2008, 455, 208–212.

118

Cooper, T. A.; Zandavi, S. H.; Ni, G. W.; Tsurimaki, Y.; Huang, Y.; Boriskina, S. V.; Chen, G. Contactless steam generation and superheating under one sun illumination. Nat. Commun. 2018, 9, 5086.

119

Xiao, C. H.; Chen, L. H.; Mu, P.; Jia, J.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Sugarcane-based photothermal materials for efficient solar steam generation. ChemistrySelect. 2019, 4, 7891–7895.

120

Zhu, M. W.; Li, Y. J.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X. G.; Wang, Y. B.; Lacey, S. D.; Dai, J. Q.; Wang, C. W. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107.

121

Liu, J.; Liu, Q. L.; Ma, D. L.; Yuan, Y.; Yao, J. H.; Zhang, W.; Su, H. L.; Su, Y. S.; Gu, J. J.; Zhang, D. Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation. J. Mater. Chem. A. 2019, 7, 9034–9039.

122

Liu, P. F.; Miao, L.; Deng, Z. Y.; Zhou, J. H.; Su, H.; Sun, L. X.; Tanemura, S.; Cao, W. J.; Jiang, F. M.; Zhao, L. D. A mimetic transpiration system for record high conversion efficiency in solar steam generator under one-sun. Mater. Today Energy. 2018, 8, 166–173.

123

Zhang, Q.; Hu, R.; Chen, Y. L.; Xiao, X. F.; Zhao, G. M.; Yang, H. J.; Li, J. H.; Xu, W. L.; Wang, X. B. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion. Appl. Energy. 2020, 276, 115545.

124

Xu, W.; Xing, Y.; Liu, J.; Wu, H.; Cui, Y.; Li, D.; Guo, D.; Li, C.; Liu, A.; Bai, H. Efficient Water Transport and Solar Steam Generation via Radially, Hierarchically Structured Aerogels. ACS Nano 2019, 13, 7930–7938.

125

Wu, L.; Dong, Z.; Cai, Z.; Ganapathy, T.; Fang, N. X.; Li, C.; Yu, C.; Zhang, Y.; Song, Y. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications 2020, 11, 521.

126

Zang, L. L.; Finnerty, C.; Zheng, S. X.; Conway, K.; Sun, L. G.; Ma, J.; Mi, B. X. Interfacial solar vapor generation for desalination and brine treatment: Evaluating current strategies of solving scaling. Water Res. 2021, 198, 117135.

127

Xu, N.; Li, J. L.; Wang, Y.; Fang, C.; Li, X. Q.; Wang, Y. X.; Zhou, L.; Zhu, B.; Wu, Z.; Zhu, S. N. et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 2019, 5, eaaw7013.

128

Li, J. Y.; Zhou, X.; Mu, P.; Wang, F.; Sun, H. X.; Zhu, Z. Q.; Zhang, J. W.; Li, W. W.; Li, A. Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators. ACS Appl. Mater. Interfaces. 2020, 12, 798–806.

129

He, S. M.; Chen, C. J.; Kuang, Y. D.; Mi, R. Y.; Liu, Y.; Pei, Y.; Kong, W. Q.; Gan, W. T.; Xie, H.; Hitz, E. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 2019, 12, 1558–1567.

130

Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature. 2010, 463, 640–643.

131

Ju, J.; Bai, H.; Zheng, Y. M.; Zhao, T. Y.; Fang, R. C.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247.

132

Cao, M. Y.; Ju, J.; Li, K.; Dou, S. X.; Liu, K. S.; Jiang, L. Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv. Funct. Mater. 2014, 24, 3235–3240.

133

Song, C.; Zheng, Y. M. Wetting-controlled strategies: From theories to bio-inspiration. J. Colloid Interface Sci. 2014, 427, 2–14.

134

Garrod, R. P.; Harris, L. G.; Schofield, W. C. E.; McGettrick, J.; Ward, L. J.; Teare, D. O. H.; Badyal, J. P. S. Mimicking a stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir. 2007, 23, 689–693.

135

Nakajima, A.; Nakagawa, Y.; Furuta, T.; Sakai, M.; Isobe, T.; Matsushita, S. Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions. Langmuir. 2013, 29, 9269–9275.

136

Gao, C. R.; Sun, Z. X.; Li, K.; Chen, Y. N.; Cao, Y. Z.; Zhang, S. Y.; Feng, L. Integrated oil separation and water purification by a double-layer TiO2-based mesh. Energy Environ. Sci. 2013, 6, 1147–1151.

137

Shang, M.; Wang, W. Z.; Sun, S. M.; Gao, E. P.; Zhang, Z. J.; Zhang, L.; O'Hayre, R. The design and realization of a large-area flexible nanofiber-based mat for pollutant degradation: An application in photocatalysis. Nanoscale. 2013, 5, 5036–5042.

138

Zhou, H.; Xu, J.; Liu, X. H.; Zhang, H. W.; Wang, D. T.; Chen, Z. H.; Zhang, D.; Fan, T. X. Bio-inspired photonic materials: Prototypes and structural effect designs for applications in solar energy manipulation. Adv. Funct. Mater. 2018, 28, 1705309.

139

Pris, A. D.; Utturkar, Y.; Surman, C.; Morris, W. G.; Vert, A.; Zalyubovskiy, S.; Deng, T.; Ghiradella, H. T.; Potyrailo, R. A. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nat. Photon. 2012, 6, 195–200.

140

Gorbunov, V.; Fuchigami, N.; Stone, M.; Grace, M.; Tsukruk, V. V. Biological thermal detection: Micromechanical and microthermal properties of biological infrared receptors. Biomacromolecules. 2002, 3, 106–115.

141

Zhang, L.; Sheng, D. L.; Wang, D.; Yao, Y. Z.; Yang, K.; Wang, Z. G.; Deng, L. M.; Chen, Y. Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics. 2018, 8, 1591–1606.

142

Gou, Y.; Miao, D. D.; Zhou, M.; Wang, L. J.; Zhou, H. Y.; Su, G. X. Bio-inspired protein-based nanoformulations for cancer theranostics. Front. Pharmacol. 2018, 9, 421.

143

Farokhi, M.; Mottaghitalab, F.; Saeb, M. R.; Thomas, S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J. Control. Release. 2019, 309, 203–219.

144

Jagdish, A, K.; Garg, K.; Ramamurthy, P. C.; Mahapatra, D. R.; Hegde, G. Moldable biomimetic nanoscale optoelectronic platforms for simultaneous enhancement in optical absorption and charge transport. Nanoscale. 2018, 10, 3730–3737.

Nano Research
Pages 3122-3142
Cite this article:
Geng Y, Jiao K, Liu X, et al. Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation. Nano Research, 2022, 15(4): 3122-3142. https://doi.org/10.1007/s12274-021-3834-9
Topics:

1042

Views

21

Crossref

23

Web of Science

22

Scopus

2

CSCD

Altmetrics

Received: 07 June 2021
Revised: 05 August 2021
Accepted: 22 August 2021
Published: 09 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return