Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Designing hybrid transition metal compounds with optimized electronic structure and firmly dispersing them on a matrix to avoid aggregation and shedding is of great significance for achieving high electrocatalytic performances. Herein, an adsorption-complexation-calcination strategy based on channel confining effect is explored to obtain CoN-CoOx hybrid nanoparticles uniformly dispersed in mesoporous carbon. The CoN-CoOx/C composite exhibits excellent electrocatalytic behavior for oxygen reduction reaction (ORR). The half-wave potential and durability are comparable or superior to those of Pt/C. When applying as cathode catalyst for a primary zinc-air battery, the open-circuit voltage and peak power density reach up to 1.394 V and 109.8 mW·cm−2, respectively. A high gravimetric energy density of 950.3 Wh·kgZn−1 is delivered at 10 mA·cm−2 with good rate capability and stability. Density functional theory (DFT) calculation demonstrates the favorable ORR intermediate adsorbability and metallic characteristics of CoN grains with oxide hybridization to optimize the electronic structure. This work provides a facile adjustable approach for obtaining highly dispersed nanoparticles with controllable hybrid composition on a substrate, which is important for future design and optimization of high-performance electrocatalysts.
Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.
Yang, H. Z.; Wang, B.; Li, H. Y.; Ni, B.; Wang, K.; Zhang, Q.; Wang, X. Trimetallic sulfide mesoporous nanospheres as superior electrocatalysts for rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1801839.
Wang, L.; Wang, X. T.; Zhong, J. H.; Xiao, K.; Ouyang, T.; Liu, Z. Q. Filling the charge-discharge voltage gap in flexible hybrid zinc-based batteries by utilizing a pseudocapacitive material. Chem. Eur. J. 2021, 27, 5796–5802.
Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Liu, Z. Q. Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 6492–6499.
Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.
Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.
Guo, X. M.; Qian, C.; Shi, R. H.; Zhang, W.; Xu, F.; Qian, S. L.; Zhang, J. H.; Yang, H. X.; Yuan, A. H.; Fan, T. X. Biomorphic Co-N-C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction. Small 2019, 15, 1804855.
Yang, J.; Zhu, G. X.; Liu, Y. J.; Xia, J. X.; Ji, Z. Y.; Shen, X. P.; Wu, S. K. Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 4712–4721.
Liu, Y. J.; Xie, X. L.; Zhu, G. X.; Mao, Y.; Yu, Y. N.; Ju, S. X.; Shen, X. P.; Pang, H. Small sized Fe-Co sulfide nanoclusters anchored on carbon for oxygen evolution. J. Mater. Chem. A 2019, 7, 15851–15861.
Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.
Zhang, H.; Xi, B. J.; Gu, Y.; Chen, W. H.; Xiong, S. L. Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.
Huang, K. K.; Sun, Y.; Zhang, Y.; Wang, X. Y.; Zhang, W.; Feng, S. H. Hollow-structured metal oxides as oxygen-related catalysts. Adv. Mater. 2019, 31, 1801430.
Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Ma, T. Y.; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13291–13296.
An, L.; Huang, W. F.; Zhang, N. L.; Chen, X.; Xia, D. G. A novel CoN electrocatalyst with high activity and stability toward oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 62–65.
Doan-Nguyen, V. V. T.; Zhang, S.; Trigg, E. B.; Agarwal, R.; Li, J.; Su, D.; Winey, K. I.; Murray, C. B. Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. ACS Nano 2015, 9, 8108–8115.
Zhao, S. Y.; Wang, K.; Zou, X. L.; Gan, L.; Du, H. D.; Xu, C. J.; Kang, F. Y.; Duan, W. H.; Li, J. Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Res. 2019, 12, 925–930.
Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 2018, 118, 2313–2339.
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.
Hu, T. J.; Wang, Y.; Zhang, L. N.; Tang, T.; Xiao, H.; Chen, W. W.; Zhao, M.; Jia, J. F.; Zhu, H. Y. Facile synthesis of PdO-doped Co3O4 nanoparticles as an efficient bifunctional oxygen electrocatalyst. Appl. Catal. B: Environ. 2019, 243, 175–182.
Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Xia, H. C.; Cheng, F. Y.; Zhou, M. F.; Li, J.; Qiao, Y. Y.; Mu, S. C.; Xu, Q. Co2P-CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting. Adv. Funct. Mater. 2018, 28, 1805641.
Yang, Y.; Zeng, R.; Xiong, Y.; DiSalvo, F. J.; Abruña, H. D. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2019, 141, 19241–19245.
Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.
Tan, H.; Liu, Z. H.; Chao, D. L.; Hao, P.; Jia, D. D.; Sang, Y. H.; Liu, H.; Fan, H. J. Partial nitridation-induced electrochemistry enhancement of ternary oxide nanosheets for fiber energy storage device. Adv. Energy Mater. 2018, 8, 1800685.
Guo, X. M.; Qian, C.; Wan, X. H.; Zhang, W.; Zhu, H. W.; Zhang, J. H.; Yang, H. X.; Lin, S. L.; Kong, Q. H.; Fan, T. X. Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale 2020, 12, 4374–4382.
Zhang, H. C.; Li, Y. J.; Zhang, G. X.; Xu, T. H.; Wan, P. B.; Sun, X. M. A metallic CoS2 nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2015, 3, 6306–6310.
Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.
Chen, C.; Su, H.; Lu, L. N.; Hong, Y. S.; Chen, Y. Z.; Xiao, K.; Ouyang, T.; Qin, Y. L.; Liu, Z. Q. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem. Eng. J. 2021, 408, 127814.
Huang, M.; Xi, B. J.; Shi, N. X.; Feng, J. K.; Qian, Y. T.; Xue, D. F.; Xiong, S. L. Quantum-matter Bi/TiO2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage. Small Struct. 2021, 2, 2000085.
Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q,; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.
Liang, Z. Z.; Fan, X.; Lei, H. T.; Qi, J.; Li, Y. Y.; Gao, J. P.; Huo, M. L.; Yuan, H. T.; Zhang, W.; Lin, H. P. et al. Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2018, 57, 13187–13191.
Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co, N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.
Trogadas, P.; Fuller, T. F.; Strasser, P. Carbon as catalyst and support for electrochemical energy conversion. Carbon 2014, 75, 5–42.
Lyu, X.; Li, G.; Chen, X. K.; Shi, B. W.; Liu, J. Z.; Zhuang, L. Z.; Jia, Y. Atomic cobalt on defective bimodal mesoporous carbon toward efficient oxygen reduction for zinc-air batteries. Small Methods 2019, 3, 1800450.
Galeano, C.; Meier, J. C.; Peinecke, V.; Bongard, H.; Katsounaros, I.; Topalov, A. A.; Lu, A. H.; Mayrhofer, K. J. J.; Schüth, F. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 2012, 134, 20457–20465.
Zhang, X. L.; Gao, R.; Li, Z. Y.; Hu, Z. B.; Liu, H. Y.; Liu, X. F. Enhancing the performance of CoO as cathode catalyst for Li-O2 batteries through confinement into bimodal mesoporous carbon. Electrochim. Acta 2016, 201, 134–141.
Wang, C. Y.; Zhao, Y. J.; Zhou, L. L.; Liu, Y.; Zhang, W.; Zhao, Z. W.; Hozzein, W. N.; Alharbi, H. M. S.; Li, W.; Zhao, D. Y. Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries. J. Mater. Chem. A 2018, 6, 21550–21557.
Chen, L. J.; Chen, S. J.; Qin, Y.; Xu, L.; Yin, G. Q.; Zhu, J. L.; Zhu, F. F.; Zheng, W.; Li, X. P.; Yang, H. B. Construction of porphyrin-containing metallacycle with improved stability and activity within mesoporous carbon. J. Am. Chem. Soc. 2018, 140, 5049–5052.
Egeberg, A.; Warmuth, L.; Riegsinger, S., Gerthsen, D.; Feldmann, C. Pyridine-based low-temperature synthesis of CoN, Ni3N and Cu3N nanoparticles. Chem. Commun. 2018, 54, 9957–9960.
Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Yu, X.; Wang, C.; Ma, T. L. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2019, 12, 2774–2780.
Huang, M.; Mi, K.; Zhang, J. H.; Liu, H. L.; Yu, T. T.; Yuan, A. H.; Kong, Q. H.; Xiong, S. L. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 2017, 5, 266–274.
Tang, C. W.; Wang, C. B.; Chien, S. H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 2008, 473, 68–73.
Zhang, J. H.; Huang, M.; Xi, B. J.; Mi, K.; Yuan, A. H.; Xiong, S. L. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701330.
Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868.
Han, S. W.; Bang, J.; Ko, S. H.; Ryoo, R. Variation of nitrogen species in zeolite-templated carbon by low-temperature carbonization of pyrrole and the effect on oxygen reduction activity. J. Mater. Chem. A 2019, 7, 8353–8360.
Wang, M. Q.; Yang, W. H.; Wang, H. H.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Pyrolyzed Fe-N-C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal. 2014, 4, 3928–3936.
Wei, R. C.; Huang, M.; Ma, W. Z.; Xi, B. J.; Feng, Z. Y.; Li, H. B.; Feng, J. K.; Xiong, S. L. N-doped carbon nanotubes formed in a wide range of temperature and ramping rate for fast sodium storage. J. Energy Chem. 2020, 49, 136–146.
Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.
Wan, X.; Guo, X.; Duan, M.; Shi, J.; Liu, S.; Zhang, J.; Liu, Y.; Zheng, X.; Kong, Q. Ultrafine CoO nanoparticles and Co-N-C lamellae supported on mesoporous carbon for efficient electrocatalysis of oxygen reduction in zinc-air batteries. Electrochim. Acta 2021, 394, 139135.
Si, Y. J.; Zhang, Y. J.; Lu, L. H.; Zhang, S.; Chen, Y.; Liu, J. H.; Jin, H. Y.; Hou, S. E.; Dai, K.; Song, W. G. Boosting visible light photocatalytic hydrogen evolution of graphitic carbon nitride via enhancing it interfacial redox activity with cobalt/nitrogen doped tubular graphitic carbon. Appl. Catal. B: Environ. 2018, 225, 512–518.
Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, 2115–2117.
Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13840–19844.
Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.
Dregely, D.; Lindfors, K.; Lippitz, M.; Engheta, N.; Totzeck, M.; Giessen, H. Imaging and steering an optical wireless nanoantenna link. Nat. Commun. 2014, 5, 4354.
Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.
Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S. W.; Cai, J. Y.; Sun, D.; Zhu, Y. C. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li–S chemistry. Joule 2018, 2, 2681–2693.
Varga, T.; Ballai, G.; Vásárhelyi, L.; Haspel, H.; Kukovecz, Á.; Kónya, Z. Co4N/nitrogen-doped graphene: A non-noble metal oxygen reduction electrocatalyst for alkaline fuel cells. Appl. Catal. B: Environ. 2018, 237, 826–834.
Zheng, X. J.; Wu, J.; Cao, X. C.; Abbott, J.; Jin, C.; Wang, H. B.; Strasser, P.; Yang, R. Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B: Environ. 2019, 241, 442–451.
Liu, Z. H.; Tan, H.; Liu, D. B.; Liu, X. B.; Xin, J. P.; Xie, J. F.; Zhao, M. W.; Song, L.; Dai, L. M.; Liu, H. Promotion of overall water splitting activity over a wide pH range by interfacial electrical effects of metallic NiCo-nitrides nanoparticle/NiCo2O4 nanoflake/graphite fibers. Adv. Sci. 2019, 6, 1801829.
Yin, J.; Li, Y. X.; Lv, F.; Fan, Q. H.; Zhao, Y. Q.; Zhang, Q. L.; Wang, W.; Cheng, F. Y.; Xi, P. X.; Guo, S. J. NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries. ACS Nano 2017, 11, 2275–2283.