Journal Home > Volume 15 , Issue 3

Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are generally catalyzed by precious metals (Pt) and metal oxides (IrO2) which still have many shortages including expensive price, poor selectivity and undesirable stability. In this work, we report a Mn0-doped CoNx on N-doped porous carbon (Mn-CoNx/N-PC) composite from carbonizing metal-organic framework (MOF) derivative as the dual-functional catalyst to boost both the ORR and OER performances. Owing to the strong coordination effect between nitrogen and metal elements, the introduction of N can obviously improve the content of Co-N-C active sites for ORR. Meanwhile, the Mn-doping significantly regulates the electronic structure of the Co element and increases the content of Co0 which provide efficient OER active sites. Mn-CoNx/N-PC catalyst delivers super dual-functional activity with a half-wave potential of 0.85 V, better than the 20% Pt/C catalyst (0.82 V). When used in Zn-air batteries for testing, Mn-CoNx/N-PC electrocatalyst shows a high power density (145 mW·cm−2) and good cycle performance.


menu
Abstract
Full text
Outline
About this article

Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries

Show Author's information Hanzhen Zheng1,§Fei Ma1,§Hongcen Yang1Xiaogang Wu1Rui Wang1Dali Jia1Zhixia Wang1Niandi Lu1Fen Ran2Shanglong Peng1( )
National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China

§Hanzhen Zheng and Fei Ma contributed equally to this work.

Abstract

Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are generally catalyzed by precious metals (Pt) and metal oxides (IrO2) which still have many shortages including expensive price, poor selectivity and undesirable stability. In this work, we report a Mn0-doped CoNx on N-doped porous carbon (Mn-CoNx/N-PC) composite from carbonizing metal-organic framework (MOF) derivative as the dual-functional catalyst to boost both the ORR and OER performances. Owing to the strong coordination effect between nitrogen and metal elements, the introduction of N can obviously improve the content of Co-N-C active sites for ORR. Meanwhile, the Mn-doping significantly regulates the electronic structure of the Co element and increases the content of Co0 which provide efficient OER active sites. Mn-CoNx/N-PC catalyst delivers super dual-functional activity with a half-wave potential of 0.85 V, better than the 20% Pt/C catalyst (0.82 V). When used in Zn-air batteries for testing, Mn-CoNx/N-PC electrocatalyst shows a high power density (145 mW·cm−2) and good cycle performance.

Keywords: Zn-air batteries, bifunctional electrocatalysts, Co-N-C, Mn-doped

References(51)

1

Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786.

2

Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn-and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

3

Li, Y. B.; Fu, J.; Zhong, C.; Wu, T. P.; Chen, Z. W.; Hu, W. B.; Amine, K.; Lu, J. Recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 2019, 9, 1802605.

4

Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in mof-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Energy Mater. 2018, 28, 1704537.

5

Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

6

Tao, L.; Lin, C. Y.; Dou, S.; Feng, S.; Chen, D. W.; Liu, D. D.; Huo, J.; Xia, Z. H.; Wang, S. Y. Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy 2017, 41, 417–425.

7

Xu, Q. C.; Liu, Y.; Jiang, H.; Hu, Y. J.; Liu, H. L.; Li, C. Z. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.

8

Li, X. M.; Dong, F.; Xu, N. N.; Zhang, T.; Li, K. X.; Qiao, J. L. Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 2018, 10, 15591–15601.

9

Azadmanjiri, J.; Wang, J.; Berndt, C. C.; Yu, A. M. 2D layered organic-inorganic heterostructures for clean energy applications. J. Mater. Chem. A 2018, 6, 3824–3849.

10

Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2017, 11, 163–173.

11

Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 14710–14714.

12

You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068–7076.

13

Zhang, H. X.; Jiang, H.; Hu, Y. J.; Saha, P.; Li, C. Z. Mo-triggered amorphous Ni3S2 nanosheets as efficient and durable electrocatalysts for water splitting. Mater. Chem. Front. 2018, 2, 1462–1466.

14

Hou, Y.; Wen, Z. H.; Cui, S. M.; Ci, S. Q.; Mao, S.; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882.

15

Li, C. L.; Wu, M. C.; Liu, R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B Environ. 2019, 244, 150–158.

16

Cao, R. G.; Lee, J. S.; Liu, M. L.; Cho, J. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2012, 2, 816–829.

17

Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.

18

Chen, Y. N.; Guo, Y. B.; Cui, H. J.; Xie, Z. J.; Zhang, X.; Wei, J. P.; Zhou, Z. Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid-and solid-state Zn-air batteries. J. Mater. Chem. A 2018, 6, 9716–9722.

19

He, K.; Cao, Z.; Liu, R. R.; Miao, Y.; Ma, H. Y.; Ding, Y. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 9, 1856–1865.

20
Huang, X. F.; Oleynikov, P.; He, H. L.; Mayoral, A.; Mu, L. Q.; Lin, F.; Zhang, Y. B. Docking MOF crystals on graphene support for highly selective electrocatalytic peroxide production. Nano Res., in press, https://doi.org/10.1007/s12274-021-3382-3.
DOI
21

Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.

22

Dou, S.; Li, X. Y.; Tao, L.; Huo, J.; Wang, S. Y. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727–9730.

23

Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 256, 117893.

24

Wei, L. C.; Qiu, L. J.; Liu, Y. Y.; Zhang, J. M.; Yuan, D. S.; Wang, L. Mn-doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-air batteries. ACS Sustainable Chem. Eng. 2019, 7, 14180–14188.

25

Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co Nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.

26

Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

27

Chen, B. H.; He, X. B.; Yin, F. X.; Wang, H.; Liu, D. J.; Shi, R. X.; Chen, J. N.; Yin, H. W. Mo-Co@N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 2017, 27, 1700795.

28

Liang, Z. Z.; Zhang, C. C.; Yuan, H. T.; Zhang, W.; Zheng, H. Q.; Cao, R. PVP-assisted transformation of a metal-organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chem. Commun. 2018, 54, 7519–7522.

29

Chen, L.; Jiang, H.; Jiang, H. B.; Zhang, H. X.; Guo, S. J.; Hu, Y. J.; Li, C. Z. Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater. 2017, 7, 1602782.

30

Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605–1611.

31

Wang, Q. C.; Lei, Y. P.; Chen, Z. Y.; Wu, N.; Wang, Y. B.; Wang, B.; Wang, Y. D. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J. Mater. Chem. A 2018, 6, 516–526.

32

Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.

33

Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 2018, 12, 128–139.

34

Wang, W. H.; Kuai, L.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Yu, M. K.; Geng, B. Y. Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)-and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 14977–14981.

35

Cao, X. C.; Wu, J.; Jin, C.; Tian, J. H.; Strasser, P.; Yang, R. Z. MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li-O2 batteries. ACS Catal. 2015, 5, 4890–4896.

36

Kuo, C. H.; Mosa, I. M.; Thanneeru, S.; Sharma, V.; Zhang, L. C.; Biswas, S.; Aindow, M.; Alpay, S. P.; Rusling, J. F.; Suib, S. L. et al. Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chem. Commun. 2015, 51, 5951–5954.

37

Xu, J. Y.; Zhang, H.; Xu, P. B.; Wang, R. F.; Tong, Y. L.; Lu, Q. Y.; Gao, F. In situ construction of hierarchical Co/MnO@graphite carbon composites for highly supercapacitive and OER electrocatalytic performances. Nanoscale 2018, 10, 13702–13712.

38

Menezes, P. W.; Indra, A.; Sahraie, N. R.; Bergmann, A.; Strasser, P.; Driess, M. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. ChemSusChem 2015, 8, 164–171.

39

Wang, L. B.; Zhang, W. B.; Zheng, X. S.; Chen, Y. Z.; Wu, W. L.; Qiu, J. X.; Zhao, X. C.; Zhao, X.; Dai, Y. Z.; Zeng, J. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869–876.

40

Xu, Q. C.; Jiang, H.; Zhang, H. X.; Jiang, H. B.; Li, C. Z. Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction. Electrochim. Acta 2018, 259, 962–967.

41

Liu, X. H.; Xu, L. J.; Xu, G. Y.; Jia, W. D.; Ma, Y. F.; Zhang, Y. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoNx@NC catalysts under mild conditions. ACS Catal. 2016, 6, 7611–7620.

42

Huang, M. Q.; Liu, W. W.; Wang, L.; Liu, J. W.; Chen, G. Y.; You, W. B.; Zhang, J.; Yuan, L. J.; Zhang, X. F.; Che, R. C. Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 810–817.

43

Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable Zinc-air batteries. Adv. Mater. 2018, 30, 1703657.

44

Nguyen, A. I.; Suess, D. L. M.; Darago, L. E.; Oyala, P. H.; Levine, D. S.; Ziegler, M. S.; Britt, R. D.; Tilley, T. D. Manganese-cobalt oxido cubanes relevant to manganese-doped water oxidation catalysts. J. Am. Chem. Soc. 2017, 139, 5579–5587.

45

Wang, H.; Liu, R. P.; Li, Y. T.; Lü, X. J.; Wang, Q.; Zhao, S. Q.; Yuan, K. J.; Cui, Z. M.; Li, X.; Xin, S. et al. Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2018, 2, 337–348.

46

Hu, L. B.; Wei, Z. X.; Yu, F.; Yuan, H. F.; Liu, M. C.; Wang, G.; Peng, B. H.; Dai, B.; Ma, J. M. Defective ZnS nanoparticles anchored in situ on N-doped carbon as a superior oxygen reduction reaction catalyst. J. Energy Chem. 2019, 39, 152–159.

47

Yang, L.; Shi, L.; Wang, D.; Lv, Y. L.; Cao, D. P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691–698.

48

Meng, F. L.; Wang, Z. L.; Zhong, H. X.; Wang, J.; Yan, J. M.; Zhang, X. B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv. Mater. 2016, 28, 7948–7955.

49

Zhao, J.; Fu, N.; Liu, R. Graphite-wrapped Fe core-shell nanoparticles anchored on graphene as pH-universal electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2018, 10, 28509–28516.

50

Zhou, N.; Wang, N.; Wu, Z. X.; Li, L. G. Probing active sites on metal-free, nitrogen-doped carbons for oxygen electroreduction: A review. Catalysts 2018, 8, 509.

51

Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590–5595.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 July 2021
Revised: 11 August 2021
Accepted: 19 August 2021
Published: 15 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was financially supported by the Gansu Provincial Natural Science Foundation of China (No. 17JR5RA198), the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2018-119, lzujbky-2018-ct08, and lzujbky-2019-it23), Key Areas Scientific and Technological Research Projects in Xinjiang Production and Construction Corps (No. 2018AB004), the National Natural Science Foundation of China (No. 11975114), Cooperation project of Gansu Academy of Sciences(No. 2020HZ-2), the fund of State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals (No. SKLAB02019001) and Cooperation project of Gansu Academy of Sciences (No. 2020HZ-2).

Return