AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Single-atom Zn for boosting supercapacitor performance

Zongge Li1Danni Wang2Huifang Li5Mang Ma1Ying Zhang1Zifeng Yan1Stefano Agnoli4Guoxin Zhang2( )Xiaoming Sun3( )
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova I-35131, Italy
College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, China
Show Author Information

Graphical Abstract

Abstract

Single-atom metal-incorporated carbon nanomaterials (CMs) have shown great potential towards broad catalytic applications. In this work, we show that N-doped porous CMs embedded with redox-able Zn atoms exhibit superior capacitive performance. High Zn (~ 2.72 at.%)/N (~ 12.51 at.%) doping were realized by incorporating Zn2+ and benzamide into the condensation and carbonization of formamide and subsequent annealing at 900 °C. The Zn and N species are mutually benefited during the formation of ZnN4 motif. The as-obtained Zn1NC material affords a very large capacitance of 621 F·g−1 (at 0.1 A·g−1), superior rate capability (~ 65% retention at 100 A·g−1), and excellent cycling stability (0.00044% per cycle at 10 A·g−1). These merits are attributed to the high Zn/N loading, atomic Zn-boosted pseudocapacitive behavior, large specific surface area (~ 1,085 m2·g−1), and rich pore hierarchy, thus ensuring both large pseudo-capacitance (e.g., ~ 37.9% at 10 mV·s−1) and double-layer capacitance. Besides of establishing a new type of high Zn/N-loading carbon materials, our work uncovers the capacitive roles of atomically dispersed metals in CMs.

References

1

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

2

Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

3

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

4

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

5

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

6

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

7

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

8

Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020, 6, 658–674.

9

Liu, S.; Yang, H. B.; Hung, S. F.; Ding, J.; Cai, W. Z.; Liu, L. H.; Gao, J. J.; Li, X. N.; Ren, X. Y.; Kuang, Z. C. et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem., Int. Ed. 2020, 59, 798–803.

10

Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

11

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

12

Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.

13

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

14

Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.

15

Wang, Y. C.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q. G.; Chen, Z. Y.; Xiong, X.; Wang, D. S.; Lei, Y. P. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609–4624.

16

Hou, Y.; Huang, Y. B.; Liang, Y. L.; Chai, G. L.; Yi, J. D.; Zhang, T.; Zang, K. T.; Luo, J.; Xu, R.; Lin, H. et al. Unraveling the reactivity and selectivity of atomically isolated metal-nitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2. CCS Chem. 2019, 1, 384–395.

17

Ma, M.; Kumar, A.; Wang, D. N.; Wang, Y. Y.; Jia, Y.; Zhang, Y.; Zhang, G. X.; Yan, Z. F.; Sun, X. M. Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B:Environ. 2020, 274, 119091.

18

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

19

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

20

Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

21

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

22

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C−N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

23

Ni, W. P.; Liu, Z. X.; Zhang, Y.; Ma, C.; Deng, H. Q.; Zhang, S. G.; Wang, S. Y. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 2021, 33, 2003238.

24

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

25

Chen, X. L.; Paul, R.; Dai, L. M. Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 2017, 4, 453–489.

26

Lian, C.; Janssen, M.; Liu, H. L.; Van Roij, R. Blessing and curse: How a supercapacitor’s large capacitance causes its slow charging. Phys. Rev. Lett. 2020, 124, 076001.

27

El-Kady, M. F.; Ihns, M.; Li, M. P.; Hwang, J. Y.; Mousavi, M. F.; Chaney, L.; Lech, A. T.; Kaner, R. B. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 2015, 112, 4233–4238.

28

Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

29

Wang, Y. F.; Liang, Y. Y.; Wu, Y. F.; Yang, J.; Zhang, X.; Cai, D. D.; Peng, X.; Kurmoo, M.; Zeng, M. H. In situ pyrolysis tracking and real-time phase evolution: From a binary zinc cluster to supercapacitive porous carbon. Angew. Chem., Int. Ed. 2020, 59, 13232–13237.

30

Liu, T. Y.; Zhou, Z. P.; Guo, Y. C.; Guo, D.; Liu, G. L. Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat. Commun. 2019, 10, 675.

31

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

32

Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

33

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

34

Babu, K. R.; Zhu, N. B.; Bao, H. L. Iron-catalyzed C−H alkylation of heterocyclic C−H bonds. Org. Lett. 2017, 19, 46–49.

35

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

36

Li, Z.; Xu, Z. W.; Wang, H. L.; Ding, J.; Zahiri, B.; Holt, C. M. B.; Tan, X. H.; Mitlin, D. Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 2014, 7, 1708–1718.

37

Zhao, G. Y.; Chen, C.; Yu, D. F.; Sun, L.; Yang, C. H.; Zhang, H.; Sun, Y.; Besenbacher, F.; Yu, M. One-step production of O−N−S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 2018, 47, 547–555.

38

Tan, Z. Q.; Ni, K.; Chen, G. X.; Zeng, W. C.; Tao, Z. C.; Ikram, M.; Zhang, Q. B.; Wang, H. J.; Sun, L. T.; Zhu, X. J. et al. Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv. Mater. 2017, 29, 1603414.

39

Li, J.; Chen, S. G.; Yang, N.; Deng, M. M.; Ibraheem, S.; Deng, J. H.; Li, J.; Li, L.; Wei, Z. D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem., Int. Ed. 2019, 58, 7035–7039.

40

Song, P.; Luo, M.; Liu, X. Z.; Xing, W.; Xu, W. L.; Jiang, Z.; Gu, L. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1700802.

41

Sun, J. Q.; Lowe, S. E.; Zhang, L. J.; Wang, Y. Z.; Pang, K. L.; Wang, Y.; Zhong, Y. L.; Liu, P.; Zhao, K.; Tang, Z. Y. et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511–16515.

42

Wang, Q.; Ina, T.; Chen, W. T.; Shang, L.; Sun, F. F.; Wei, S. H.; Sun-Waterhouse, D.; Telfer, S. G.; Zhang, T. R.; Waterhouse, G. I. N. Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Sci. Bull. 2020, 65, 1743–1751.

43

Xie, F.; Xu, Z.; Jensen, A. C. S.; Au, H.; Lu, Y. X.; Araullo-Peters, V.; Drew, A. J.; Hu, Y. S.; Titirici, M. M. Hard-soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 2019, 29, 1901072.

44

Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. E. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

45

Jeong, G. Y.; Singh, A. K.; Kim, M. G.; Gyak, K. W.; Ryu, U.; Choi, K. M.; Kim, D. P. Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations. Nat. Commun. 2018, 9, 3968.

46

Hong, Z. S.; Zhen, Y. C.; Ruan, Y. R.; Kang, M. L.; Zhou, K. Q.; Zhang, J. M.; Huang, Z. G.; Wei, M. D. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv. Mater. 2018, 30, 1802035.

47

Wang, C. H.; Kim, J.; Tang, J.; Kim, M. J.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J. S.; Yamauchi, Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020, 6, 19–40.

48

Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in Zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.

49

Dong, L. B.; Ma, X. P.; Li, Y.; Zhao, L.; Liu, W. B.; Cheng, J. Y.; Xu, C. J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018, 13, 96–102.

50

Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

51

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

52

Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

53

Xiong, G. P.; He, P. G.; Lyu, Z. P.; Chen, T. F.; Huang, B. Y.; Chen, L.; Fisher, T. S. Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 2018, 9, 790.

54

Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

55

Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

56

Shao, H.; Wu, Y. C.; Lin, Z. F.; Taberna, P. L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039.

57

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

58

Wang, Q.; Yan, J.; Fan, Z. J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762.

59

Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

60

Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Gao, J.; Jin, X. T.; Zhao, Y.; Jiang, L.; Qu, L. T. A capacity recoverable zinc-ion micro-supercapacitor. Energy Environ. Sci. 2018, 11, 3367–3374.

61

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

62

Lou, Y.; Cai, Y. F.; Hu, W. D.; Wang, L.; Dai, Q. G.; Zhan, W. C.; Guo, Y. L.; Hu, P.; Cao, X. M.; Liu, J. Y. et al. Identification of active area as active center for CO oxidation over single Au atom catalyst. ACS Catal. 2020, 10, 6094–6101.

63

Sun, F.; Qu, Z. B.; Gao, J. H.; Wu, H. B.; Liu, F.; Han, R.; Wang, L. J.; Pei, T.; Zhao, G. B.; Lu, Y. F. In situ doping boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance. Adv. Funct. Mater. 2018, 28, 1804190.

64

Liu, M. Y.; Niu, J.; Zhang, Z. P.; Dou, M. L.; Wang, F. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 2018, 51, 366–372.

65

Peng, H. R.; Yao, B.; Wei, X. J.; Liu, T. Y.; Kou, T. Y.; Xiao, P.; Zhang, Y. H.; Li, Y. Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 2019, 9, 1803665.

66

Fan, X. M.; Yu, C.; Yang, J.; Ling, Z.; Hu, C.; Zhang, M. D.; Qiu, J. S. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 2015, 5, 1401761.

67

Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W. et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 2015, 27, 3541–3545.

68

Sun, F.; Wu, H. B.; Liu, X.; Liu, F.; Zhou, H. H.; Gao, J. H.; Lu, Y. F. Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Res. 2016, 9, 3209–3221.

Nano Research
Pages 1715-1724
Cite this article:
Li Z, Wang D, Li H, et al. Single-atom Zn for boosting supercapacitor performance. Nano Research, 2022, 15(3): 1715-1724. https://doi.org/10.1007/s12274-021-3839-4
Topics:

1056

Views

36

Crossref

32

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 12 July 2021
Revised: 17 August 2021
Accepted: 19 August 2021
Published: 29 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return