AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Improving solar control of magnetism in ternary organic photovoltaic system with enhanced photo-induced electrons doping

Yujing Du1,§Shiping Wang2,§Lei Wang3( )Shengye Jin2Yifan Zhao1( )Tai Min3Zhuangde Jiang4Ziyao Zhou1Ming Liu1
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China
State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 710049, China

§Yujing Du and Shiping Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The growing demand for storage space has promoted in-depth research on magnetic performance regulation in an energy-saving way. Recently, we developed a solar control of magnetism, allowing the magnetic moment to be manipulated by sunlight instead of the magnetic field, current, or laser. Here, binary and ternary photoactive systems with different photon-to-electron conversions are proposed. The photovoltaic/magnetic heterostructures with a ternary system induce larger magnetic changes due to higher short current density (JSC) (20.92 mA·cm−2) compared with the binary system (11.94 mA·cm−2). During the sunlight illumination, ferromagnetic resonance (FMR) shift increases by 80% (from 169.52 to 305.48 Oe) attributed to enhanced photo-induced electrons doping, and the variation of saturation magnetization (MS) is also amplified by 14% (from 9.9% to 11.3%). Furthermore, photovoltaic performance analysis and the transient absorption (TA) spectra indicate that the current density plays a major role in visible light manipulating magnetism. These findings clarify the laws of sunlight control of magnetism and lay the foundation for the next generation solar-driven magneto-optical memory applications.

References

1

Fina, I.; Dix, N.; Menéndez, E.; Crespi, A.; Foerster, M.; Aballe, L.; Sánchez, F.; Fontcuberta, J. Flexible antiferromagnetic FeRh tapes as memory elements. ACS Appl. Mater. Interfaces 2020, 12, 15389–15395.

2

Yuan, J. S.; Lin, J.; Alasad, Q.; Taheri, S. Ultra-low-power design and hardware security using emerging technologies for internet of things. Electronics 2017, 6, 67.

3

Jang, B. K.; Lee, J. H.; Chu, K.; Sharma, P.; Kim, G. Y.; Ko, K. T.; Kim, K. E.; Kim, Y. J.; Kang, K.; Jane, H. B. et al. Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point. Nat. Phys. 2017, 13, 189–196.

4

Náfrádi, B.; Szirmai, P.; Spina, M.; Pisoni, A.; Mettan, X.; Nemes, N. M.; Forró, L.; Horváth, E. Tuning ferromagnetism at room temperature by visible light. Proc. Natl. Acad. Sci. USA 2020, 117, 6417–6423.

5

Zhao, S. S.; Zhou, Z. Y.; Li, C. L.; Peng, B.; Hu, Z. Q.; Liu, M. Low-voltage control of (Co/Pt)x perpendicular magnetic anisotropy heterostructure for flexible spintronics. ACS Nano 2018, 12, 7167–7173.

6

Molinari, A.; Hahn, H.; Kruk, R. Voltage-controlled on/off switching of ferromagnetism in manganite supercapacitors. Adv. Mater. 2018, 30, 1703908.

7

Liu, M.; Howe, B. M.; Grazulis, L.; Mahalingam, K.; Nan, T. X.; Sun, N. X.; Brown, G. J. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 2013, 25, 4886–4892.

8

Liu, M.; Obi, O.; Lou, J.; Chen, Y. J.; Cai, Z. H.; Stoute, S.; Espanol, M.; Lew, M.; Situ, X. D.; Ziemer, K. S. et al. Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 2009, 19, 1826–1831.

9

Zhao, Y. F.; Zhao, S. S.; Wang, L.; Zhou, Z. Y.; Liu, J. X.; Min, T.; Peng, B.; Hu, Z. Q.; Jin, S. Y.; Liu, M. Sunlight control of interfacial magnetism for solar driven spintronic applications. Adv. Sci. 2019, 6, 1901994.

10

Weil, J. A. A review of electron-spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys. Chem. Miner. 1984, 10, 149–165.

11

Kwak, W. Y.; Kwon, J. H.; Grünberg, P.; Han, S. H.; Cho, B. K. Current-induced magnetic switching with spin-orbit torque in an interlayer-coupled junction with a ta spacer layer. Sci. Rep. 2018, 8, 3826.

12

Mangin, S.; Ravelosona, D.; Katine, J. A.; Carey, M. J.; Terris, B. D.; Fullerton, E. E. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 2006, 5, 210–215.

13

Zhang, L.; Hou, W. X.; Dong, G. H.; Zhou, Z. Y.; Zhao, S. S.; Hu, Z. Q.; Ren, W.; Chen, M. F.; Nan, C. W.; Ma, J. et al. Low voltage induced reversible magnetoelectric coupling in Fe3O4 thin films for voltage tunable spintronic devices. Mater. Horiz. 2018, 5, 991–999.

14

Xue, X.; Dong, G. H.; Zhou, Z. Y.; Xiang, D.; Hu, Z. Q.; Ren, W.; Ye, Z. G.; Chen, W.; Jiang, Z. D.; Liu, M. Voltage control of two-magnon scattering and induced anomalous magnetoelectric coupling in Ni-Zn ferrite. ACS Appl. Mater. Interfaces 2017, 9, 43188–43196.

15

Lou, J.; Liu, M.; Reed, D.; Ren, Y. H.; Sun, N. X. Giant electric field tuning of magnetism in novel multiferroic FeGaB/lead zinc niobate-lead titanate (PZN-PT) heterostructures. Adv. Mater. 2009, 21, 4711–4715.

16

Zhao, S. S.; Wang, L.; Zhou, Z. Y.; Li, C. L.; Dong, G. H.; Zhang, L.; Peng, B.; Min, T.; Hu, Z. Q.; Ma, J. et al. Ionic liquid gating control of spin reorientation transition and switching of perpendicular magnetic anisotropy. Adv. Mater. 2018, 30, 1801639.

17

Yang, Q.; Zhou, Z. Y.; Wang, L. Q.; Zhang, H. J.; Cheng, Y. X.; Hu, Z. Q.; Peng, B.; Liu, M. Ionic gel modulation of RKKY interactions in synthetic anti-ferromagnetic nanostructures for low power wearable spintronic devices. Adv. Mater. 2018, 30, 1800449.

18

Yang, Q.; Wang, L.; Zhou, Z. Y.; Wang, L. Q.; Zhang, Y. J.; Zhao, S. S.; Dong, G. H.; Cheng, Y. X.; Min, T.; Hu, Z. Q. et al. Ionic liquid gating control of RKKY interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 multilayers. Nat. Commun. 2018, 9, 991.

19

Guan, M. M.; Wang, L.; Zhao, S. S.; Zhou, Z. Y.; Dong, G. H.; Su, W.; Min, T.; Ma, J.; Hu, Z. Q.; Ren, W. et al. Ionic modulation of the interfacial magnetism in a bilayer system comprising a heavy metal and a magnetic insulator for voltage-tunable spintronic devices. Adv. Mater. 2018, 30, 1802902.

20

Zhao, Y. F.; Zhao, S. S.; Wang, L.; Wang, S. P.; Du, Y. J.; Zhao, Y. N.; Jin, S. Y.; Min, T.; Tian, B.; Jiang, Z. D. et al. Photovoltaic modulation of ferromagnetism within a FM metal/P-N junction Si heterostructure. Nanoscale 2021, 13, 272–279.

21

Zhao, Y. F.; Zhao, M.; Tian, B.; Jiang, Z. D.; Wang, Y. H.; Liu, M.; Zhou, Z. Y. Enhancing sunlight control of interfacial magnetism by introducing the ZnO layer for electron harvesting. ACS Appl. Mater. Interfaces 2021, 13, 2018–2024.

22

Zhou, G.; Li, T. H.; Wu, Y. Y.; Wang, P. F.; Leng, K. M.; Liu, C. C.; Shan, Y.; Liu, L. Z. Light-controlled ferromagnetism in porphyrin functionalized ultrathin FeS nanosheets. Adv. Opt. Mater. 2020, 8, 2000046.

23

Zhao, S. S.; Zhao, Y. F.; Tian, B.; Liu, J. X.; Jin, S. Y.; Jiang, Z. D.; Zhou, Z. Y.; Liu, M. Photovoltaic control of ferromagnetism for flexible spintronics. ACS Appl. Mater. Interfaces 2020, 12, 41999–42006.

24

Yamada, M.; Kuroda, F.; Tsukahara, M.; Yamada, S.; Fukushima, T.; Sawano, K.; Oguchi, T.; Hamaya, K. Spin injection through energy-band symmetry matching with high spin polarization in atomically controlled ferromagnet/ferromagnet/semiconductor structures. NPG Asia Mater. 2020, 12, 47.

25

Sun, X. N.; Vélez, S.; Atxabal, A.; Bedoya-Pinto, A.; Parui, S.; Zhu, X. W.; Llopis, R.; Casanova, F.; Hueso, L. E. A molecular spin-photovoltaic device. Science 2017, 357, 677–680.

26

Cabero, M.; Nagy, K.; Gallego, F.; Sander, A.; Rio, M.; Cuellar, F. A.; Tornos, J.; Hernandez-Martin, D.; Nemes, N. M.; Mompean, F. et al. Modified magnetic anisotropy at LaCoO3/La0.7Sr0.3MnO3 interfaces. APL Mater. 2017, 5, 096104.

27

Náfrádi, B.; Szirmai, P.; Spina, M.; Lee, H.; Yazyev, O. V.; Arakcheeva, A.; Chernyshov, D.; Gibert, M.; Forró, L.; Horváth, E. Optically switched magnetism in photovoltaic perovskite CH3NH3 (Mn: Pb)I3. Nat. Commun. 2016, 7, 13406.

28

Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906.

29

Stoltzfus, D. M.; Donaghey, J. E.; Armin, A.; Shaw, P. E.; Burn, P. L.; Meredith, P. J. Charge generation pathways in organic solar cells: Assessing the contribution from the electron acceptor. Chem. Rev. 2016, 116, 12920–12955.

30

Gregg, B. A.; Hanna, M. C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 2003, 93, 3605–3614.

31

Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 2003, 107, 4688–4698.

32

Lu, L. Y.; Kelly, M. A.; You, W.; Yu, L. P. Status and prospects for ternary organic photovoltaics. Nat. Photon. 2015, 9, 491–500.

33

An, Q. S.; Zhang, F. J.; Zhang, J.; Tang, W. H.; Deng, Z. B.; Hu, B. Versatile ternary organic solar cells: A critical review. Energy Environ. Sci. 2016, 9, 281–322.

34

Bonaccorso, F.; Balis, N.; Stylianakis, M. M.; Savarese, M.; Adamo, C.; Gemmi, M.; Pellegrini, V.; Stratakis, E.; Kymakis, E. Functionalized graphene as an electron-cascade acceptor for air-processed organic ternary solar cells. Adv. Funct. Mater. 2015, 25, 3870–3880.

35

Cheng, P.; Li, Y. F.; Zhan, X. W. Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ. Sci. 2014, 7, 2005–2011.

36

Zhang, J. Q.; Zhao, Y. F.; Fang, J.; Yuan, L.; Xia, B. Z.; Wang, G. D.; Wang, Z. Y.; Zhang, Y. J.; Ma, W.; Yan, W. Enhancing performance of large-area organic solar cells with thick film via ternary strategy. Small 2017, 13, 1700388.

37

Zhang, J. Q.; Zhang, Y. J.; Fang, J.; Lu, K.; Wang, Z. Y.; Ma, W.; Wei, Z. X. Conjugated polymer-small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 2015, 137, 8176–8183.

38

Zhao, Y. F.; Wang, G. D.; Wang, Y. H.; Xiao, T.; Adil, M. A.; Lu, G. H.; Zhang, J. Q.; Wei, Z. X. A sequential slot-die coated ternary system enables efficient flexible organic solar cells. Sol. RRL 2019, 3, 1800333.

39

Ben Dkhil, S.; Duché, D.; Gaceur, M.; Thakur, A. K.; Aboura, F. B.; Escoubas, L.; Simon, J. J.; Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G. et al. Interplay of optical, morphological, and electronic effects of ZnO optical spacers in highly efficient polymer solar cells. Adv. Energy Mater. 2014, 4, 1400805.

40

Guan, M. M.; Wang, L.; Zhao, S. S.; Peng, B.; Su, W.; He, Z. X.; Dong, G. H.; Min, T.; Ma, J.; Hu, Z. Q. et al. Ionic modulation of interfacial magnetism in light metal/ferromagnetic insulator layered nanostructures. Adv. Funct. Mater. 2019, 29, 1805592.

41

Wang, L.; Wang, X. R.; Min, T.; Xia, K. Charge-induced ferromagnetic phase transition and anomalous hall effect in full d-band nonmagnetic metals. Phys. Rev. B 2019, 99, 224416.

42

Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926–952.

43

Rolczynski, B. S.; Szarko, J. M.; Son, H. J.; Liang, Y. Y.; Yu, L. P.; Chen, L. X. Ultrafast intramolecular exciton splitting dynamics in isolated low-band-gap polymers and their implications in photovoltaic materials design. J. Am. Chem. Soc. 2012, 134, 4142–4152.

44

Szarko, J. M.; Rolczynski, B. S.; Lou, S. J.; Xu, T.; Strzalka, J.; Marks, T. J.; Yu, L. P.; Chen, L. X. Photovoltaic function and exciton/charge transfer dynamics in a highly efficient semiconducting copolymer. Adv. Funct. Mater. 2014, 24, 10–26.

Nano Research
Pages 2626-2633
Cite this article:
Du Y, Wang S, Wang L, et al. Improving solar control of magnetism in ternary organic photovoltaic system with enhanced photo-induced electrons doping. Nano Research, 2022, 15(3): 2626-2633. https://doi.org/10.1007/s12274-021-3841-x
Topics:

832

Views

4

Crossref

6

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 28 May 2021
Revised: 04 August 2021
Accepted: 24 August 2021
Published: 04 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return