AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid

Muwei Ji1,2,§Xin Yang3,§Shengding Chang3,§Wenxing Chen4,§Jin Wang1,3,§( )Dongsheng He5Yao Hu3Qian Deng3You Sun3Bo Li3Jingyu Xi3Tomoaki Yamada6Jiatao Zhang4Hai Xiao7Caizhen Zhu2Jia Li3( )Yadong Li7( )
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Materials Characterization and Preparation Center, Southern University of Science and Technology, Shenzhen 518055, China
Department of Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Muwei Ji, Xin Yang, Shengding Chang, Wenxing Chen, and Jin Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Developing highly efficient oxygen evolution reaction (OER) catalyst for the acidic corrosive operating conditions is a challenging task. Herein, we report the synthesis of uniform RuO2 clusters with ~ 2 nm in size via electrochemical leaching of Sr from SrRuO3 ceramic in acid. The RuO2 clusters exhibit ultrahigh OER activity with overpotential of ~ 160 mV at 10 mA·cmgeo−2 in 1.0 M HClO4 solution for 30-h testing. The extended X-ray absorption fine structure measurement reveals enlarged Jahn-Teller distortion of Ru-O octahedra in the RuO2 clusters compared to its bulk counterpart. Density function theory calculations show that the enhanced Jahn-Teller distortion can improve the intrinsic OER activity of RuO2.

References

1

Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.

2

Wu, G.; Chen, W. X.; Zheng, X. S.; He, D. P.; Luo, Y. Q.; Wang, X. Q.; Yang, J.; Wu, Y.; Yan, W. S.; Zhuang, Z. B. et al. Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy 2017, 38, 167–174.

3

Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

4

Qian, M. M.; Cui, S. S.; Jiang, D. C.; Zhang, L.; Du, P. W. Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using fenip substitutional-solid-solution nanoplate arrays. Adv. Mater. 2017, 29, 1704075.

5

Chen, G.; Zhou, W.; Guan, D. Q.; Sunarso, J.; Zhu, Y. P.; Hu, X. F.; Zhang, W.; Shao, Z. P. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofilms with tunable oxidation state. Sci. Adv. 2017, 3, e1603206.

6

Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J. F.; Gong, S. P.; Liu, S.; Huang, M. X.; Wang, H.; Chen, Q. W. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 2020, 10, 1152–1160.

7

Feng, Z. X.; Hong, W. T.; Fong, D. D.; Lee, Y. L.; Yacoby, Y.; Morgan, D.; Shao-Horn, Y. Catalytic activity and stability of oxides: The role of near-surface atomic structures and compositions. Acc. Chem. Res. 2016, 49, 966–973.

8

Nellist, M. R.; Laskowski, F. A. L.; Lin, F.; Mills, T. J.; Boettcher, S. W. Semiconductor-electrocatalyst interfaces: Theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 2016, 49, 733–740.

9

Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

10

He, P.; Yu, X. Y.; Lou, X. W. Carbon-Incorporated Nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 129, 3955–3958.

11

Wu, Y. Y.; Tariq, M.; Zaman, W. Q.; Sun, W.; Zhou, Z. H.; Yang, J. Ni-Co codoped RuO2 with outstanding oxygen evolution reaction performance. ACS Appl. Energy Mater. 2019, 2, 4105–4110.

12

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

13

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Cai, Q. R.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336–3339.

14

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

15

Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

16

Arif, M.; Yasin, G.; Luo, L.; Ye, W.; Mushtaq, M. A.; Fang, X. Y.; Xiang, X.; Ji, S. F.; Yan, D. P. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl. Catal. B:Environ. 2020, 265, 118559.

17

Arif, M.; Yasin, G.; Shakeel, M.; Fang, X. Y.; Gao, R.; Ji, S. F.; Yan, D. P. Coupling of bifunctional CoMn-layered double hydroxide@graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting. Chem. Asian J. 2018, 13, 1045–1052.

18

Wu, J.; Xue, Y.; Yan, X.; Yan, W. S.; Cheng, Q. M.; Xie, Y. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 2012, 5, 521–530.

19

Dong, Q. C.; Zhang, Y. Z.; Dai, Z. Y.; Wang, P.; Zhao, M.; Shao, J. J.; Huang, W.; Dong, X. C. Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction. Nano Res. 2018, 11, 1389–1398.

20

Ye, W.; Yang, Y. S.; Fang, X. Y.; Arif, M.; Chen, X. B.; Yan, D. P. 2D cocrystallized metal-organic nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. ACS Sustainable Chem. Eng. 2019, 7, 18085–18092.

21

Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.

22

Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

23

Yu, J. H.; Cheng, G. Z.; Luo, W. 3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Res. 2018, 11, 2149–2158.

24

Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.

25

Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. J. Nano Res. 2020, 13, 3068–3074.

26

Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096–2105.

27
Xue, H. Y.; Meng, A.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, doi: 10.1007/s12274-021-3359-2.https://doi.org/10.1007/s12274-021-3359-2
28

Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

29

Guo, Z. G.; Ye, W.; Fang, X. Y.; Wan, J.; Ye, Y. Y.; Dong, Y. Y.; Cao, D.; Yan, D. P. Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorg. Chem. Front. 2019, 6, 687–693.

30

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

31

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

32

Gao, R.; Zhang, H.; Yan, D. P. Iron diselenide nanoplatelets: Stable and efficient water-electrolysis catalysts. Nano Energy 2017, 31, 90–95.

33

Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting. J. Energy Chem. 2021, 58, 237–246.

34

Yao, L. H.; Zhang, N.; Wang, Y.; Ni, Y. M.; Yan, D. P.; Hu, C. W. Facile formation of 2D Co2P@Co3O4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting. J. Power Sources 2018, 374, 142–148.

35

Diaz-Morales, O.; Raaijman, S.; Kortlever, R.; Kooyman, P. J.; Wezendonk, T.; Gascon, J.; Fu, W. T.; Koper, M. T. M. Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 2016, 7, 12363.

36

Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 2000, 287, 1474–1476.

37

Willinger, E.; Massue, C.; Schlogl, R.; Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 2017, 139, 12093–12101.

38

Wilde, P. M.; Guther, T. J.; Oesten, R.; Garche, J. Strontium ruthenate perovskite as the active material for supercapacitors. J. Electroanal. Chem. 1999, 461, 154–160.

39

Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 2020, 10, 3650–3657.

40

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

41

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

42

Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

43

Kim, J.; Shih, P. C.; Tsao, K. C.; Pan, Y. T.; Yin, X.; Sun, C. J.; Yang, H. High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. J. Am. Chem. Soc. 2017, 139, 12076–12083.

44

Kim, B. J.; Abbott, D. F.; Cheng, X.; Fabbri, E.; Nachtegaal, M.; Bozza, F.; Castelli, I. E.; Lebedev, D.; Schäublin, R.; Copéret, C. et al. Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide. ACS Catal. 2017, 7, 3245–3256.

45

Lee, S. A.; Oh, S.; Hwang, J. Y.; Choi, M.; Youn, C.; Kim, J. W.; Chang, S. H.; Woo, S.; Bae, J. S.; Park, S. et al. Enhanced electrocatalytic activity via phase transitions in strongly correlated SrRuO3 thin films. Energy Environ. Sci. 2017, 10, 924–930.

46

Sahu, R. K.; Pandey, S. K.; Pathak, L. C. Valence and origin of metal-insulator transition in Mn doped SrRuO3 studied by electrical transport, X-ray photoelectron spectroscopy and LSDA+U calculation. J. Solid State Chem. 2011, 184, 523–530.

47

Chang, S. H.; Danilovic, N.; Chang, K. C.; Subbaraman, R.; Paulikas, A. P.; Fong, D. D.; Highland, M. J.; Baldo, P. M.; Stamenkovic, V. R.; Freeland, J. W. et al. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat. Comm. 2014, 5, 4191.

48

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

49

Chang, S. H.; Connell, J. G.; Danilovic, N.; Subbaraman, R.; Chang, K. C.; Stamenkovic, V. R.; Markovic, N. M. Activity-stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss. 2014, 176, 125–133.

50

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

51

Briquet, L. G. V.; Sarwar, M.; Mugo, J.; Jones, G.; Calle-Vallejo, F. A new type of scaling relations to assess the accuracy of computational predictions of catalytic activities applied to the oxygen evolution reaction. ChemCatChem 2017, 9, 1261–1268.

52

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

Nano Research
Pages 1959-1965
Cite this article:
Ji M, Yang X, Chang S, et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Research, 2022, 15(3): 1959-1965. https://doi.org/10.1007/s12274-021-3843-8
Topics:

994

Views

34

Crossref

35

Web of Science

37

Scopus

3

CSCD

Altmetrics

Received: 28 June 2021
Revised: 19 August 2021
Accepted: 25 August 2021
Published: 20 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return