AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site

Zhenxing Li1( )Mingliang Hu1Jiahao Liu1Weiwei Wang1Yanjie Li1Wenbin Fan2Yixuan Gong1Jiasai Yao1Ping Wang1Miao He1Yongle Li2,3( )
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
Department of Physics, International Center of Quantum and Molecular Structures, and Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Blvd. Pasadena, California 91125, USA
Show Author Information

Graphical Abstract

Abstract

Selective semi-hydrogenation of phenylacetylene to styrene is a crucial step in the polystyrene industry. Although Pd-based catalysts are widely used in this reaction due to their excellent hydrogenation activity, the selectivity for styrene remains a great challenge. Herein, we designed a mesoporous silica stabilized Pd-Ru@ZIF-8 (MS Pd-Ru@ZIF-8) nanoreactor with novel Pd and Ru single site synergistic catalytical system for semi-hydrogenation of phenylacetylene. The nanoreactor exhibited a superior performance, achieving 98% conversion of phenylacetylene and 96% selectivity to styrene. Turnover frequency (TOF) of nanoreactor was up to as high as 2,188 h−1, which was 25 times and 5 times more than the single metal species catalysts, mesoporous silica stabilized Pd@ZIF-8 nanoreactor (MS Pd@ZIF-8), and mesoporous silica stabilized Ru@ZIF-8 nanoreactor (MS Ru@ZIF-8). This catalytic activity was attributed to the synergistic effect of Pd and Ru single site anchored strongly into the framework of ZIF-8, which reduced the desorption energy of styrene and increased the hydrogenation energy barrier of styrene. Importantly, since the ordered mesoporous silica was introduced into the nanoreactor shell to stabilize ZIF-8, MS Pd-Ru@ZIF-8 showed excellent reusability and stability. After the five cycles, the catalytical activity and selectivity still remained. This work provides insights for a synergistic catalytic system based on single-site active sites for selective hydrogenation reactions.

References

1

Li, L.; Yang, Z.; Fan, W. P.; He, L. C.; Cui, C.; Zou, J. H.; Tang, W.; Jacobson, O.; Wang, Z. T.; Niu, G. et al. In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv. Funct. Mater. 2020, 30, 1907716.

2

Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater. 2019, 31, 1800426.

3

Meng, J. J.; Chang, F. W.; Su, Y. C.; Liu, R.; Cheng, T. Y.; Liu, G. H. Switchable catalysts used to control Suzuki cross-coupling and aza-michael addition/asymmetric transfer hydrogenation cascade reactions. ACS Catal. 2019, 9, 8693–8701.

4

Astle, M. A.; Rance, G. A.; Loughlin, H. J.; Peters, T. D.; Khlobystov, A. N. Molybdenum dioxide in carbon nanoreactors as a catalytic nanosponge for the efficient desulfurization of liquid fuels. Adv. Funct. Mater. 2019, 29, 1808092.

5

Tian, H.; Huang, F.; Zhu, Y. H.; Liu, S. M.; Han, Y.; Jaroniec, M.; Yang, Q. H.; Liu, H. Y.; Lu, G. Q. M.; Liu, J. The development of yolk-shell-structured Pd&ZnO@carbon submicroreactors with high selectivity and stability.Adv. Funct. Mater. 2018, 28, 1801737.

6

Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. J. Achieving the trade-off between selectivity and activity in semihydrogenation of alkynes by fabrication of (asymmetrical Pd@Ag core)@(CeO2 shell) nanocatalysts via autoredox reaction. Adv. Mater. 2017, 29, 1605332.

7

Mori, S.; Ohkubo, T.; Ikawa, T.; Kume, A.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Pd(0)-polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes. J. Mol. Catal. A:Chem. 2009, 307, 77–87.

8

Karakhanov, E.; Maximov, A.; Kardasheva, Y.; Semernina, V.; Zolotukhina, A.; Ivanov, A.; Abbott, G.; Rosenberg, E.; Vinokurov, V. Pd nanoparticles in dendrimers immobilized on silica-polyamine composites as catalysts for selective hydrogenation. ACS Appl. Mater. Interfaces 2014, 6, 8807–8816.

9

Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes. ACS Catal. 2013, 3, 1700–1708.

10

Karakhanov, E. A.; Maximov, A. L.; Zakharyan, E. M.; Zolotukhina, A. V.; Ivanov, A. O. Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of unsaturated hydrocarbons. Mol. Catal. 2017, 440, 107–119.

11

Karakanov, E. A.; Zolotukhina, A. V.; Ivanov, A. O.; Maximov, A. L. Dendrimer-encapsulated Pd nanoparticles, immobilized in silica pores, as catalysts for selective hydrogenation of unsaturated compounds. ChemistryOpen 2019, 8, 358–381.

12

Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

13

Wang, Y.; Lv, H.; Grape, E. S.; Gaggioli, C. A.; Tayal, A.; Dharanipragada, A.; Willhammar, T.; Inge, A. K.; Zou, X. D.; Liu, B. et al. A tunable multivariate metal-organic framework as a platform for designing photocatalysts. J. Am. Chem. Soc. 2021, 143, 6333–6338.

14

Tsumori, N.; Chen, L. Y.; Wang, Q. J.; Zhu, Q. L.; Kitta, M.; Xu, Q. Quasi-MOF: Exposing inorganic nodes to guest metal nanoparticles for drastically enhanced catalytic activity. Chem 2018, 4, 845–856.

15

Zhao, R.; Liang, Z. B.; Gao, S.; Yang, C.; Zhu, B. J.; Zhao, J. L.; Qu, C.; Zou, R. Q.; Xu, Q. Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew. Chem., Int. Ed. 2019, 58, 1975–1979.

16

Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.; Peng, Q.; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.

17

Yu, J. W.; Wang, X. Y.; Yuan, C. Y.; Li, W. Z.; Wang, Y. H.; Zhang, Y. W. Synthesis of ultrathin Ni nanosheets for semihydrogenation of phenylacetylene to styrene under mild conditions. Nanoscale 2018, 10, 6936–6944.

18

Kuwahara, Y.; Kango, H.; Yamashita, H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes. ACS Catal. 2019, 9, 1993–2006.

19

Quiroz, J.; Barbosa, E. C. M.; Araujo, T. P.; Fiorio, J. L.; Wang, Y. C.; Zou, Y. C.; Mou, T.; Alves, T. V.; de Oliveira, D. C.; Wang, B. et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Lett. 2018, 18, 7289–7297.

20

Hammarback, L. A.; Clark, I. P.; Sazanovich, I. V.; Towrie, M.; Robinson, A.; Clarke, F.; Meyer, S.; Fairlamb, I. J. S.; Lynam, J. M. Mapping out the key carbon-carbon bond-forming steps in Mn-catalysed C-H functionalization. Nat. Catal. 2018, 1, 830–840.

21

Riley, C.; Zhou, S. L.; Kunwar, D.; De La Riva, A.; Peterson, E.; Payne, R.; Gao, L. Y.; Lin, S.; Guo, H.; Datye, A. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 2018, 140, 12964–12973.

22

Wu, Q. H.; Huang, L.; Li, J. Q.; Zheng, A. M.; Tao, Y.; Yang, L. X.; Yin, W. H.; Luo, F. Pd@Zn-MOF-74: Restricting a guest molecule by the open-metal site in a metal-organic framework for selective semihydrogenation. Inorg. Chem. 2018, 57, 12444–12447.

23

Bakuru, V. R.; Velaga, B.; Peela, N. R.; Kalidindi, S. B. Hybridization of Pd nanoparticles with UIO-66(Hf) metal-organic framework and the effect of nanostructure on the catalytic properties. Chem. Eur. J. 2018, 24, 15978–15982.

24

Hodge, K. L.; Goldberger, J. E. Transition metal-free alkyne hydrogenation catalysis with BaGa2, a hydrogen absorbing layered zintl phase. J. Am. Chem. Soc. 2019, 141, 19969–19972.

25

Zhang, J. B.; Xu, W. W.; Xu, L.; Shao, Q.; Huang, X. Q. Concavity tuning of intermetallic Pd-Pb nanocubes for selective semihydrogenation catalysis. Chem. Mater. 2018, 30, 6338–6345.

26

Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.

27

Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically Dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271–4275.

28

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

29

Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotech. 2018, 13, 702–707.

30

Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.

31

Sharma, P.; Kumar, S.; Tomanec, O.; Petr, M.; Chen, J. Z.; Miller, J. T.; Varma, R. S.; Gawande, M. B.; Zbořil, R. Carbon nitride-based ruthenium single atom photocatalyst for CO2 reduction to methanol. Small 2021, 17, 2006478.

32

Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem., Int. Ed. 2020, 59, 15849–15854.

33

An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.

34

Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Metal-ligand core-shell nanocomposite catalysts for the selective semihydrogenation of alkynes. Angew. Chem., Int. Ed. 2013, 52, 1481–1485.

35

Yang, X.; Tat, T.; Libanori, A.; Cheng, J.; Xuan, X. X.; Liu, N.; Yang, X.; Zhou, J. H.; Nashalian, A.; Chen, J. Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction. Mater. Today 2021, 45, 54–61.

36

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

37

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

38

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

39

Zhang, K.; Bin, D.; Yang, B. B.; Wang, C. Q.; Ren, F. F.; Du, Y. K. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation. Nanoscale 2015, 7, 12445–12451.

40

Hub, S.; Hilaire, L.; Touroude, R. Hydrogenation of but-1-yne and but-1-ene on palladium catalysts: Particle size effect. Appl. Catal. 1988, 36, 307–322.

41

Ryndin, Y. A.; Nosova, L. V.; Boronin, A. I.; Chuvilin, A. L. Effect of dispersion of supported palladium on its electronic and catalytic properties in the hydrogenation of vinylacetylene. Appl. Catal. 1988, 42, 131–141.

42

Yu, B.; Li, H.; White, J.; Donne, S.; Yi, J. B.; Xi, S. B.; Fu, Y.; Henkelman, G.; Yu, H.; Chen, Z. L. et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 2020, 30, 1905665.

43

Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

44

Ai, S. S.; Guo, X.; Zhao, L.; Yang, D.; Ding, H. M. Zeolitic imidazolate framework-supported Prussian blue analogues as an efficient Fenton-like catalyst for activation of peroxymonosulfate. Colloids Surf. A:Physicochem. Eng. Aspects 2019, 581, 123796.

45

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

46

He, X. H.; Deng, Y. C.; Zhang, Y.; He, Q.; Xiao, D. Q.; Peng, M.; Zhao, Y.; Zhang, H.; Luo, R. C.; Gan, T. et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci. 2020, 1, 100004.

47

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

48

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.

49

Liu, K. L.; Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Zhang, Q. H.; Jing, W. T.; Ruan, P. P.; Gu, L.; Fu, G.; Zheng, N. F. Cu2O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: Critical role of oxide supports. Chin. Chem. Soc. Chem. 2019, 1, 207–214.

50

Zhang, L.; Liu, H. S.; Liu, S. H.; Banis, M. N.; Song, Z. X.; Li, J. J.; Yang, L. J.; Markiewicz, M.; Zhao, Y.; Li, R. Y. et al. Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity. ACS Catal. 2019, 9, 9350–9358.

51

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μgNH3 mgcat.−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

52

Zhou, X. N.; Zhu, M. Y.; Kang, L. H. Single-Atom X/g-C3N4(X = Au1, Pd1, and Ru1) catalysts for acetylene hydrochlorination: A density functional theory study. Catalysts 2019, 9, 808.

53

Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.

54

Xiao, M. L.; Gao, L. Q.; Wang, Y.; Wang, X.; Zhu, J. B.; Jin, Z.; Liu, C. P.; Chen, H. Q.; Li, G. R.; Ge, J. J. et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 2019, 141, 19800–19806.

55

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

56

Kotyczka-Morańska, M. Semi-quantitative and multivariate analysis of the thermal degradation of carbon-oxygen double bonds in biomass. J. Energy. Inst. 2019, 92, 923–932.

57

Veisi, H.; Razeghi, S.; Mohammadi, P.; Hemmati, S. Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mat. Sci. Eng. :C 2019, 97, 624–631.

58

Thomas, M. R.; Brown, D.; Franzen, S.; Boxer, S. G. FTIR and resonance Raman studies of nitric oxide binding to H93G cavity mutants of myoglobin. Biochemistry 2001, 40, 15047–15056.

Nano Research
Pages 1983-1992
Cite this article:
Li Z, Hu M, Liu J, et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Research, 2022, 15(3): 1983-1992. https://doi.org/10.1007/s12274-021-3849-2
Topics:

814

Views

38

Crossref

39

Web of Science

38

Scopus

6

CSCD

Altmetrics

Received: 17 May 2021
Revised: 27 August 2021
Accepted: 30 August 2021
Published: 30 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return