AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application

Xue Yin1Ligang Feng2( )Wen Yang1( )Yuanxi Zhang3Haiyan Wu3Le Yang1Lei Zhou1Lin Gan3( )Shaorui Sun4( )
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Institute of Materials Research, Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Show Author Information

Graphical Abstract

Abstract

The low intrinsic activity of Fe/N/C oxygen catalysts restricts their commercial application in the fuel cells technique; herein, we demonstrated the interface engineering of plasmonic induced Fe/N/C-F catalyst with primarily enhanced oxygen reduction performance for fuel cells applications. The strong interaction between F and Fe-N4 active sites modifies the catalyst interfacial properties as revealed by X-ray absorption structure spectrum and density functional theory calculations, which changes the electronic structure of Fe-N active site resulting from more atoms around the active site participating in the reaction as well as super-hydrophobicity from C–F covalent bond. The hybrid contribution from active sites and carbon support is proposed to optimize the three-phase microenvironment efficiently in the catalysis electrode, thereby facilitating efficient oxygen reduction performance. High catalytic performance for oxygen reduction and fuel cells practical application catalyzed by Fe/N/C-F catalyst is thus verified, which offers a novel catalyst system for fuel cells technique.

References

1
Xiao, F.; Wang, Y. C.; Wu, Z. P.; Chen, G. Y.; Yang, F.; Zhu, S. Q.; Siddharth, K.; Kong, Z. J.; Lu, A. L.; Li, J. C. et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater., in press, https://doi.org/10.1002/adma.202006292.
2

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

3

Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

4

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

5

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

6

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

7

Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

8

He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.

9

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

10

Fan, J. T.; Chen, M.; Zhao, Z. L.; Zhang, Z.; Ye, S. Y.; Xu, S. Y.; Wang, H. J.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 2021, 6, 475–486.

11

Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055–2066.

12

Hou, C. C.; Zou, L. L.; Sun, L. M.; Zhang, K. X.; Liu, Z.; Li, Y. W.; Li, C. X.; Zou, R. Q.; Yu, J. H.; Xu, Q. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 132, 7454–7459.

13

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

14

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

15

Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.

16

Wang, R. G.; Yang, Y. Y.; Zhao, Y.; Yang, L. J.; Yin, P. F.; Mao, J.; Ling, T. Multiscale structural engineering of atomically dispersed FeN4 electrocatalyst for proton exchange membrane fuel cells. J. Energy Chem. 2021, 58, 629–635.

17

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

18

Li, J. K.; Alsudairi, A.; Ma, Z. F.; Mukerjee, S.; Jia, Q. Y. Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: In situ identification of the site-blocking effect. J. Am. Chem. Soc. 2017, 139, 1384–1387.

19

Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.

20

Zhao, Z. P.; Hossain, M. D.; Xu, C. C.; Lu, Z. J.; Liu, Y. S.; Hsieh, S. H.; Lee, I.; Gao, W. P.; Yang, J.; Merinov, B. V. et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 2020, 3, 1774–1790.

21

Inaba, M.; Jensen, A. W.; Sievers, G. W.; Escudero-Escribano, M.; Zana, A.; Arenz, M. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: Measurement of oxygen reduction activities under realistic conditions. Energy Environ. Sci. 2018, 11, 988–994.

22

Yang, X. H.; Wang, Y. C.; Zhang, G. X.; Du, L.; Yang, L. J.; Markiewicz, M.; Choi, J. Y.; Chenitz, R.; Sun, S. H. SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Appl. Catal. B:Environ. 2020, 264, 118523.

23

Banham, D.; Choi, J. Y.; Kishimoto, T.; Ye, S. Y. Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices. Adv. Mater. 2019, 31, 1804846.

24

Banham, D.; Kishimoto, T.; Zhou, Y. J.; Sato, T.; Bai, K.; Ozaki, J. I.; Imashiro, Y.; Ye, S. Y. Critical advancements in achieving high power and stable nonprecious metal catalyst-based MEAs for real-world proton exchange membrane fuel cell applications. Sci. Adv. 2018, 4, eaar7180.

25

Sun, R. L.; Xia, Z. X.; Xu, X. L.; Deng, R. Y.; Wang, S. L.; Sun, G. Q. Periodic evolution of the ionomer/catalyst interfacial structures towards proton conductance and oxygen transport in polymer electrolyte membrane fuel cells. Nano Energy 2020, 75, 104919.

26

Sharma, R.; Andersen, S. M. Quantification on degradation mechanisms of polymer electrolyte membrane fuel cell catalyst layers during an accelerated stress test. ACS Catal. 2018, 8, 3424–3434.

27

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

28

Yin, X.; Utetiwabo, W.; Sun, S. H.; Lian, Y. M.; Chen, R. J.; Yang, W. Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. J. Catal. 2019, 374, 43–50.

29

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

30

Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellin, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496–12505.

31

Zhang, W.; Duchesne, P. N.; Gong, Z. L.; Wu, S. Q.; Ma, L.; Jiang, Z.; Zhang, S.; Zhang, P.; Mi, J. X.; Yang, Y. In situ electrochemical XAFS studies on an iron fluoride high-capacity cathode material for rechargeable lithium batteries. J. Phys. Chem. C 2013, 117, 11498–11505.

32

Zhao, Y.; Wei, K. Y.; Wu, H. L.; Ma, S. P.; Li, J.; Cui, Y. X.; Dong, Z. H.; Cui, Y. H.; Li, C. L. LiF splitting catalyzed by dual metal nanodomains for an efficient fluoride conversion cathode. ACS Nano 2019, 13, 2490–2500.

33

Fedoseeva, Y. V.; Bulusheva, L. G.; Koroteev, V. O.; Mevellec, J. Y.; Senkovskiy, B. V.; Flahaut, E.; Okotrub, A. V. Preferred attachment of fluorine near oxygen-containing groups on the surface of double-walled carbon nanotubes. Appl. Surf. Sci. 2020, 504, 144357.

34

Bulusheva, L. G.; Fedoseeva, Y. V.; Flahaut, E.; Rio, J.; Ewels, C. P.; Koroteev, V. O.; Van Lier, G.; Vyalikh, D. V.; Okotrub, A. V. Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes. Beilstein J. Nanotechnol. 2017, 8, 1688–1698.

35

Struzzi, C.; Scardamaglia, M.; Colomer, J. F.; Verdini, A.; Floreano, L.; Snyders, R.; Bittencourt, C. Fluorination of vertically aligned carbon nanotubes: From CF4 plasma chemistry to surface functionalization. Beilstein J. Nanotechnol. 2017, 8, 1723–1733.

36

Guo, L.; Hwang, S.; Li, B. Y.; Yang, F.; Wang, M. Y.; Chen, M. J.; Yang, X. X.; Karakalos, S. G.; Cullen, D. A.; Feng, Z. X. et al. Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: Unveiling intrinsic activity and degradation in fuel cells. ACS Nano 2021, 15, 6886–6899.

37

Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B:Environ. 2021, 280, 119411.

38

Xia, D. S.; Yang, X.; Xie, L.; Wei, Y. P.; Jiang, W. L.; Dou, M.; Li, X. N.; Li, J.; Gan, L.; Kang, F. Y. Direct growth of carbon nanotubes doped with single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Func. Mater. 2019, 29, 1906174.

39

Wang, Y. C.; Zhu, P. F.; Yang, H.; Huang, L.; Wu, Q. H.; Rauf, M.; Zhang, J. Y.; Dong, J.; Wang, K.; Zhou, Z. Y. et al. Surface fluorination to boost the stability of the Fe/N/C cathode in proton exchange membrane fuel cells. ChemElectroChem. 2018, 5, 1914–1921.

40

Zaman, S.; Huang, L.; Douka, A. I.; Yang, H.; You, B.; Xia, B. Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives. Angew. Chem., Int. Ed. 2021, 60, 17832–17852.

41

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

42

Banham, D.; Ye, S. Y. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective. ACS Energy Lett. 2017, 2, 629–638.

43

Chi, B.; Ye, Y. K.; Lu, X. Y.; Jiang, S. J.; Du, L.; Zeng, J. H.; Ren, J. W.; Liao, S. J. Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer. J. Power Sources 2019, 443, 227284.

44

Xia, D. S.; Tang, F.; Yao, X. Z.; Wei, Y. P.; Cui, Y. F.; Dou, M.; Gan, L.; Kang, F. Y. Seeded growth of branched iron-nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode. Carbon 2020, 162, 300–307.

45

Li, J. C.; Cheng, M.; Li, T.; Ma, L.; Ruan, X. F.; Liu, D.; Cheng, H. M.; Liu, C.; Du, D.; Wei, Z. D. et al. Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. J. Mater. Chem. A 2019, 7, 14478–14482.

Nano Research
Pages 2138-2146
Cite this article:
Yin X, Feng L, Yang W, et al. Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application. Nano Research, 2022, 15(3): 2138-2146. https://doi.org/10.1007/s12274-021-3850-9
Topics:

950

Views

29

Crossref

28

Web of Science

27

Scopus

5

CSCD

Altmetrics

Received: 06 July 2021
Revised: 17 August 2021
Accepted: 25 August 2021
Published: 15 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return