Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The low intrinsic activity of Fe/N/C oxygen catalysts restricts their commercial application in the fuel cells technique; herein, we demonstrated the interface engineering of plasmonic induced Fe/N/C-F catalyst with primarily enhanced oxygen reduction performance for fuel cells applications. The strong interaction between F and Fe-N4 active sites modifies the catalyst interfacial properties as revealed by X-ray absorption structure spectrum and density functional theory calculations, which changes the electronic structure of Fe-N active site resulting from more atoms around the active site participating in the reaction as well as super-hydrophobicity from C–F covalent bond. The hybrid contribution from active sites and carbon support is proposed to optimize the three-phase microenvironment efficiently in the catalysis electrode, thereby facilitating efficient oxygen reduction performance. High catalytic performance for oxygen reduction and fuel cells practical application catalyzed by Fe/N/C-F catalyst is thus verified, which offers a novel catalyst system for fuel cells technique.
Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.
Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.
Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.
Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.
Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.
Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.
He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.
Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.
Fan, J. T.; Chen, M.; Zhao, Z. L.; Zhang, Z.; Ye, S. Y.; Xu, S. Y.; Wang, H. J.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 2021, 6, 475–486.
Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055–2066.
Hou, C. C.; Zou, L. L.; Sun, L. M.; Zhang, K. X.; Liu, Z.; Li, Y. W.; Li, C. X.; Zou, R. Q.; Yu, J. H.; Xu, Q. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 132, 7454–7459.
Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.
Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.
Wang, R. G.; Yang, Y. Y.; Zhao, Y.; Yang, L. J.; Yin, P. F.; Mao, J.; Ling, T. Multiscale structural engineering of atomically dispersed FeN4 electrocatalyst for proton exchange membrane fuel cells. J. Energy Chem. 2021, 58, 629–635.
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.
Li, J. K.; Alsudairi, A.; Ma, Z. F.; Mukerjee, S.; Jia, Q. Y. Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: In situ identification of the site-blocking effect. J. Am. Chem. Soc. 2017, 139, 1384–1387.
Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.
Zhao, Z. P.; Hossain, M. D.; Xu, C. C.; Lu, Z. J.; Liu, Y. S.; Hsieh, S. H.; Lee, I.; Gao, W. P.; Yang, J.; Merinov, B. V. et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells. Matter 2020, 3, 1774–1790.
Inaba, M.; Jensen, A. W.; Sievers, G. W.; Escudero-Escribano, M.; Zana, A.; Arenz, M. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: Measurement of oxygen reduction activities under realistic conditions. Energy Environ. Sci. 2018, 11, 988–994.
Yang, X. H.; Wang, Y. C.; Zhang, G. X.; Du, L.; Yang, L. J.; Markiewicz, M.; Choi, J. Y.; Chenitz, R.; Sun, S. H. SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Appl. Catal. B:Environ. 2020, 264, 118523.
Banham, D.; Choi, J. Y.; Kishimoto, T.; Ye, S. Y. Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices. Adv. Mater. 2019, 31, 1804846.
Banham, D.; Kishimoto, T.; Zhou, Y. J.; Sato, T.; Bai, K.; Ozaki, J. I.; Imashiro, Y.; Ye, S. Y. Critical advancements in achieving high power and stable nonprecious metal catalyst-based MEAs for real-world proton exchange membrane fuel cell applications. Sci. Adv. 2018, 4, eaar7180.
Sun, R. L.; Xia, Z. X.; Xu, X. L.; Deng, R. Y.; Wang, S. L.; Sun, G. Q. Periodic evolution of the ionomer/catalyst interfacial structures towards proton conductance and oxygen transport in polymer electrolyte membrane fuel cells. Nano Energy 2020, 75, 104919.
Sharma, R.; Andersen, S. M. Quantification on degradation mechanisms of polymer electrolyte membrane fuel cell catalyst layers during an accelerated stress test. ACS Catal. 2018, 8, 3424–3434.
Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.
Yin, X.; Utetiwabo, W.; Sun, S. H.; Lian, Y. M.; Chen, R. J.; Yang, W. Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. J. Catal. 2019, 374, 43–50.
Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.
Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellin, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496–12505.
Zhang, W.; Duchesne, P. N.; Gong, Z. L.; Wu, S. Q.; Ma, L.; Jiang, Z.; Zhang, S.; Zhang, P.; Mi, J. X.; Yang, Y. In situ electrochemical XAFS studies on an iron fluoride high-capacity cathode material for rechargeable lithium batteries. J. Phys. Chem. C 2013, 117, 11498–11505.
Zhao, Y.; Wei, K. Y.; Wu, H. L.; Ma, S. P.; Li, J.; Cui, Y. X.; Dong, Z. H.; Cui, Y. H.; Li, C. L. LiF splitting catalyzed by dual metal nanodomains for an efficient fluoride conversion cathode. ACS Nano 2019, 13, 2490–2500.
Fedoseeva, Y. V.; Bulusheva, L. G.; Koroteev, V. O.; Mevellec, J. Y.; Senkovskiy, B. V.; Flahaut, E.; Okotrub, A. V. Preferred attachment of fluorine near oxygen-containing groups on the surface of double-walled carbon nanotubes. Appl. Surf. Sci. 2020, 504, 144357.
Bulusheva, L. G.; Fedoseeva, Y. V.; Flahaut, E.; Rio, J.; Ewels, C. P.; Koroteev, V. O.; Van Lier, G.; Vyalikh, D. V.; Okotrub, A. V. Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes. Beilstein J. Nanotechnol. 2017, 8, 1688–1698.
Struzzi, C.; Scardamaglia, M.; Colomer, J. F.; Verdini, A.; Floreano, L.; Snyders, R.; Bittencourt, C. Fluorination of vertically aligned carbon nanotubes: From CF4 plasma chemistry to surface functionalization. Beilstein J. Nanotechnol. 2017, 8, 1723–1733.
Guo, L.; Hwang, S.; Li, B. Y.; Yang, F.; Wang, M. Y.; Chen, M. J.; Yang, X. X.; Karakalos, S. G.; Cullen, D. A.; Feng, Z. X. et al. Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: Unveiling intrinsic activity and degradation in fuel cells. ACS Nano 2021, 15, 6886–6899.
Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B:Environ. 2021, 280, 119411.
Xia, D. S.; Yang, X.; Xie, L.; Wei, Y. P.; Jiang, W. L.; Dou, M.; Li, X. N.; Li, J.; Gan, L.; Kang, F. Y. Direct growth of carbon nanotubes doped with single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Func. Mater. 2019, 29, 1906174.
Wang, Y. C.; Zhu, P. F.; Yang, H.; Huang, L.; Wu, Q. H.; Rauf, M.; Zhang, J. Y.; Dong, J.; Wang, K.; Zhou, Z. Y. et al. Surface fluorination to boost the stability of the Fe/N/C cathode in proton exchange membrane fuel cells. ChemElectroChem. 2018, 5, 1914–1921.
Zaman, S.; Huang, L.; Douka, A. I.; Yang, H.; You, B.; Xia, B. Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives. Angew. Chem., Int. Ed. 2021, 60, 17832–17852.
Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.
Banham, D.; Ye, S. Y. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective. ACS Energy Lett. 2017, 2, 629–638.
Chi, B.; Ye, Y. K.; Lu, X. Y.; Jiang, S. J.; Du, L.; Zeng, J. H.; Ren, J. W.; Liao, S. J. Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer. J. Power Sources 2019, 443, 227284.
Xia, D. S.; Tang, F.; Yao, X. Z.; Wei, Y. P.; Cui, Y. F.; Dou, M.; Gan, L.; Kang, F. Y. Seeded growth of branched iron-nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode. Carbon 2020, 162, 300–307.
Li, J. C.; Cheng, M.; Li, T.; Ma, L.; Ruan, X. F.; Liu, D.; Cheng, H. M.; Liu, C.; Du, D.; Wei, Z. D. et al. Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. J. Mater. Chem. A 2019, 7, 14478–14482.