AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-pumping ultra-thin film evaporation on CNT-embedded silicon nitride nanopore membrane

Runkeng LiuZhenyu Liu( )
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

Abstract

The development of nanoporous membrane structure provides a potential opportunity for the advanced ultra-thin liquid film evaporation process, for which the ability of effectively and continuously maintaining the nano-thin liquid film is crucial to realize its superior performance. In this work, we elucidated the nanopore-based ultra-thin water film evaporation characteristics with non-equilibrium molecular dynamics simulation. A self-pumping water transport through the nanopore was observed, which is attributed to the driving force induced by the evaporation meniscus of thin liquid film. The dry-out crisis will occur with the increasing membrane thickness. We demonstrated that the hydrophobic carbon nanotube (CNT) can be utilized as the coating inside the hydrophilic silicon nitride (Si3N4) nanopore, which reduces the flow resistance and presents an excellent capability to replenish the evaporated water. Based on the above findings, the internal coating of CNT is an advisable strategy for nanopore-based ultra-thin liquid film evaporation, possessing a stable high evaporation flux as well as a good mechanical strength.

References

1

Vaartstra, G.; Zhang, L. N.; Lu, Z. M.; Díaz-Marín, C. D.; Grossman, J. C.; Wang, E. N. Capillary-fed, thin film evaporation devices. J. Appl. Phys. 2020, 128, 130901.

2

Li, Y. X.; Alibakhshi, M. A.; Zhao, Y. H.; Duan, C. H. Exploring ultimate water capillary evaporation in nanoscale conduits. Nano Lett. 2017, 17, 4813–4819.

3

Li, Y. X.; Chen, H. W.; Xiao, S. Y.; Alibakhshi, M. A.; Lo, C. W.; Lu, M. C.; Duan, C. H. Ultrafast diameter-dependent water evaporation from nanopores. ACS Nano 2019, 13, 3363–3372.

4

He, S. M.; Chen, C. J.; Kuang, Y. D.; Mi, R. Y.; Liu, Y.; Pei, Y.; Kong, W. Q.; Gan, W. T.; Xie, H.; Hitz, E. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 2019, 12, 1558–1567.

5

Xue, G. B.; Xu, Y.; Ding, T. P.; Li, J.; Yin, J.; Fei, W. W.; Cao, Y. Z.; Yu, J.; Yuan, L. Y.; Gong, L. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321.

6

Lao, J. C.; Wu, S.; Gao, J.; Dong, A. P.; Li, G. J.; Luo, J. Y. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano Energy 2020, 70, 104481.

7

Hanks, D. F.; Lu, Z. M.; Sircar, J.; Kinefuchi, I.; Bagnall, K. R.; Salamon, T. R.; Antao, D. S.; Barabadi, B.; Wang, E. N. High heat flux evaporation of low surface tension liquids from nanoporous membranes. ACS Appl. Mater. Interfaces 2020, 12, 7232–7238.

8

Wang, Q. Y.; Chen, R. K. Widely tunable thin film boiling heat transfer through nanoporous membranes. Nano Energy 2018, 54, 297–303.

9

Wang, Q. Y.; Chen, R. K. Ultrahigh flux thin film boiling heat transfer through nanoporous membranes. Nano Lett. 2018, 18, 3096–3103.

10

Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

11

Zhou, Y.; Ding, T. P.; Gao, M. M.; Chan, K. H.; Cheng, Y.; He, J. Q.; Ho, G. W. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy 2020, 77, 105102.

12

Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K. S.; Fujishima, A.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

13

Wen, R. F.; Xu, S. S.; Lee, Y. C.; Yang, R. G. Capillary-driven liquid film boiling heat transfer on hybrid mesh wicking structures. Nano Energy 2018, 51, 373–382.

14

Ridwan, S.; McCarthy, M. Nanostructure-supported evaporation underneath a growing bubble. ACS Appl. Mater. Interfaces 2019, 11, 12441–12451.

15

Jaikumar, A.; Kandlikar, S. G. Pool boiling enhancement through bubble induced convective liquid flow in feeder microchannels. Appl. Phys. Lett. 2016, 108, 041604.

16

Wang, Q. Y.; Shi, Y.; Chen, R. K. Transition between thin film boiling and evaporation on nanoporous membranes near the kinetic limit. Int. J. Heat Mass Transf. 2020, 154, 119673.

17

Chinappi, M.; De Angelis, E.; Melchionna, S.; Casciola, C. M.; Succi, S.; Piva, R. Molecular dynamics simulation of ratchet motion in an asymmetric nanochannel. Phys. Rev. Lett. 2006, 97, 144509.

18

Wang, X.; Liu, M. C.; Jing, D. W.; Mohamad, A.; Prezhdo, O. Net unidirectional fluid transport in locally heated nanochannel by thermo-osmosis. Nano Lett. 2020, 20, 8965–8971.

19

Lu, Z. M.; Wilke, K. L.; Preston, D. J.; Kinefuchi, I.; Chang-Davidson, E.; Wang, E. N. An ultrathin nanoporous membrane evaporator. Nano Lett. 2017, 17, 6217–6220.

20

Lu, Z. M.; Kinefuchi, I.; Wilke, K. L.; Vaartstra, G.; Wang, E. N. A unified relationship for evaporation kinetics at low mach numbers. Nat. Commun. 2019, 10, 2368.

21

Wilke, K. L.; Barabadi, B.; Lu, Z. M.; Zhang, T. J.; Wang, E. N. Parametric study of thin film evaporation from nanoporous membranes. Appl. Phys. Lett. 2017, 111, 171603.

22

Hu, H.; Weinberger, C. R.; Sun, Y. Model of meniscus shape and disjoining pressure of thin liquid films on nanostructured surfaces with electrostatic interactions. J. Phys. Chem. C 2015, 119, 11777–11785.

23

Hou, Y. Q.; Wang, M.; Chen, X. Y.; Hou, X. Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Res. 2021, 14, 2171–2178.

24

Yenigun, O.; Barisik, M. Effect of nano-film thickness on thermal resistance at water/silicon interface. Int. J. Heat Mass Transf. 2019, 134, 634–640.

25

Montazeri, K.; Qomi, M. J. A.; Won, Y. Solid-like behaviors govern evaporative transport in adsorbed water nanofilms. ACS Appl. Mater. Interfaces 2020, 12, 53416–53424.

26

Fornasiero, F.; Park, H. G.; Holt, J. K.; Stadermann, M.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA 2008, 105, 17250–17255.

27

Holt, J. K.; Noy, A.; Huser, T.; Eaglesham, D.; Bakajin, O. Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett. 2004, 4, 2245–2250.

28

Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.

29

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

30

Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188–190.

31

Wanunu, M.; Bhattacharya, S.; Xie, Y.; Tor, Y.; Aksimentiev, A.; Drndic, M. Nanopore analysis of individual rna/antibiotic complexes. ACS Nano 2011, 5, 9345–9353.

32

Price, D. J.; Brooks III, C. L. A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 2004, 121, 10096–10103.

Nano Research
Pages 1725-1729
Cite this article:
Liu R, Liu Z. Self-pumping ultra-thin film evaporation on CNT-embedded silicon nitride nanopore membrane. Nano Research, 2022, 15(3): 1725-1729. https://doi.org/10.1007/s12274-021-3851-8
Topics:

830

Views

9

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 28 June 2021
Revised: 22 August 2021
Accepted: 28 August 2021
Published: 30 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return