AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fluorine-induced dual defects in NiP2 anode with robust sodium storage performance

Liang Wu1,2Lifeng Wang3Xiaolong Cheng3Mingze Ma3Ying Wu3Xiaojun Wu3Hengpan Yang1Yan Yu3( )Chuanxin He1( )
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Abstract

Metal phosphides have shown great application potential as anode for sodium-ion batteries (NIBs) owing to high theoretical capacity, suitable operation voltage and abundant resource. Unfortunately, the application of NiP2 anode is severely impeded by low practical capacity and fast capacity decay due to the huge volume variation and low reactivity of internal phosphorus (P) component towards Na+. Herein, electronic structure modulation of NiP2 via heteroatoms doping and introducing vacancies defects to enhance Na+ adsorption sites and diffusion kinetics is successfully attempted. The as-synthesized three-dimensional (3D) bicontinuous carbon matrix decorated with well-dispersed fluorine (F)-doped NiP2 nanoparticles (F-NiP2@carbon nanosheets) delivers a high reversible capacity (585 mAh·g−1 at 0.1 A·g−1) and excellent long cycling stability (244 mAh·g−1 over 1,000 cycles at 2 A·g−1) when tested as anode in NIBs. Density functional theory (DFT) calculations reveal that F doping in NiP2 induces the formation of P vacancies with increased Na+ adsorption energy and accelerates the alloying of internal P component. The F-NiP2@carbon nanosheets//Na3V2(PO4)3 full cell is evaluated showing stable long cycling life. The heteroatoms doping-induced dual defects strategy opens up a new way of metal phosphides for sodium storage.

References

1

Huang, X. Q.; Li, D. L.; Huang, H. J.; Jiang, X.; Yang, Z. H.; Zhang, W. X. Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries. Nano Res. 2021, 14, 3531–3537.

2

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

3

Xue, Y. C.; Guo, X. M.; Wu, M. R.; Chen, J. L.; Duan, M. T.; Shi, J.; Zhang, J. H.; Cao, F.; Liu, Y. J.; Kong, Q. H. Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries. Nano Res. 2021, 14, 3598–3607.

4

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

5

Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.

6

Miao, Y. Q.; Zhao, X. S.; Wang, X.; Ma, C. H.; Cheng, L.; Chen, G.; Yue, H. J.; Wang, L.; Zhang, D. Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Res. 2020, 13, 3041–3047.

7

Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation "Beyond Li-ion" batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

8

Ma, G. Y.; Zhou, Y. L.; Wang, Y. Y.; Feng, Z. Y.; Yang, J. N, P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage. Nano Res. 2021, 14, 3523–3530.

9

Shi, S. S.; Sun, C. L.; Yin, X. P.; Shen, L. Y.; Shi, Q. H.; Zhao, K. N.; Zhao, Y. F.; Zhang, J. J. FeP quantum dots confined in carbon-nanotube-grafted p-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv. Funct. Mater. 2020, 30, 1909283.

10

Zhang, J.; Zhang, K.; Yang, J.; Lee, G. H.; Shin, J.; Lau, V. W. H.; Kang, Y. M. Bifunctional conducting polymer coated CoP core-shell nanowires on carbon paper as a free-standing anode for sodium ion batteries. Adv. Energy Mater. 2018, 8, 1800283.

11

Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.

12

Zhang, Y. J.; Wang, G. Y.; Wang, L.; Tang, L.; Zhu, M.; Wu, C.; Dou, S. X.; Wu, M. H. Graphene-encapsulated CuP2: A promising anode material with high reversible capacity and superior rate-performance for sodium-ion batteries. Nano. Lett. 2019, 19, 2575–2582.

13

Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

14

Liu, Z. L.; Wang, X. X.; Wu, Z. Y.; Yang, S. J.; Yang, S. L.; Chen, S. P.; Wu, X. T.; Chang, X. H.; Yang, P. P.; Zheng, J. et al. Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries. Nano Res. 2020, 13, 3157–3164.

15

Lou, P. L.; Cui, Z. H.; Jia, Z. Q.; Sun, J. Y.; Tan, Y. B.; Guo, X. X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano. 2017, 11, 3705–3715.

16

Owens-Baird, B.; Xu, J. Y.; Petrovykh, D. Y.; Bondarchuk, O.; Ziouani, Y.; González-Ballesteros, N.; Yox, P.; Sapountzi, F. M.; Niemantsverdriet, H.; Kolen'ko, Y. V. et al. NiP2: A story of two divergent polymorphic multifunctional materials. Chem. Mater. 2019, 31, 3407–3418.

17

Zhao, Z. X.; Li, H. J.; Yang, Z. W.; Hao, S. Y.; Wang, X. M.; Wu, Y. C. Hierarchical Ni2P nanosheets anchored on three-dimensional graphene as self-supported anode materials towards long-life sodium-ion batteries. J. Alloys Compd. 2020, 817, 152751.

18

Miao, X. G.; Yin, R. Y.; Ge, X. L.; Li, Z. Q.; Yin, L. W. Ni2P@Carbon core-shell nanoparticle-arched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries. Small 2017, 13, 1702138.

19

Xu, K.; Sun, Y. Q.; Li, X. L.; Zhao, Z. H.; Zhang, Y. Q.; Li, C. C.; Fan, H. J. Fluorine-induced dual defects in cobalt phosphide nanosheets enhance hydrogen evolution reaction activity. ACS Materials Lett. 2020, 2, 736–743.

20

Chen, J.; Wei, H. M.; Chen, H. J.; Yao, W. H.; Lin, H. L.; Han, S. N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors. Electrochim. Acta 2018, 271, 49–57.

21

Liu, T.; Li, A. R.; Wang, C. B.; Zhou, W.; Liu, S. J.; Guo, L. Interfacial electron transfer of Ni2P-NiP2 polymorphs inducing enhanced electrochemical properties. Adv. Mater. 2018, 30, 1803590.

22

Li, G. H.; Yang, H.; Li, F. C.; Du, J.; Shi, W.; Cheng, P. Facile formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode using adsorption property of metal–organic framework. J. Mater. Chem. A 2016, 4, 9593–9599.

23

Jiang, P.; Liu, Q.; Sun, X. P. NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014, 6, 13440–13445.

24

Hu, X.; Zhong, G. B.; Li, J. W.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440.

25

Wu, Y.; Hu, S. H.; Xu, R.; Wang, J. W.; Peng, Z. Q.; Zhang, Q. B.; Yu, Y. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019, 19, 1351–1358.

26

Zhang, W. L.; Yin, J.; Sun, M. L.; Wang, W. X.; Chen, C. L.; Altunkaya, M.; Emwas, A. H.; Han, Y.; Schwingenschlögl, U.; Alshareef, H. N. Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 2020, 32, 2000732.

27

Guo, Q.; Deng, W.; Xia, S. J.; Zhang, Z. B.; Zhao, F.; Hu, B. J.; Zhang, S. S.; Zhou, X. F.; Chen, G. Z.; Liu, Z. P. Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating. Nano Res. 2021, 14, 3585–3597.

28

Wu, X.; Zhao, W.; Wang, H.; Qi, X. J.; Xing, Z.; Zhuang, Q. C.; Ju, Z. C. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J. Power Sources 2018, 378, 460–467.

29

Liu, H.; Liu, Z.; Feng, L. G. Bonding state synergy of the NiF2/Ni2P hybrid with the co-existence of covalent and ionic bonds and the application of this hybrid as a robust catalyst for the energy-relevant electrooxidation of water and urea. Nanoscale 2019, 11, 16017–16025.

30

Liu, Y. H.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Cao, X.; Ma, Y. Q.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F. et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano 2017, 11, 5530–5537.

31

Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Li, T. Q.; Han, Y.; Wang, Y. S.; Tian, J.; Lin, N. et al. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv. Energy Mater. 2019, 9, 1901676.

32

Duan, J. J.; Chen, S.; Ortíz-Ledón, C. A.; Jaroniec, M.; Qiao, S. Z. Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude. Angew. Chem., Int. Ed. 2020, 59, 8181–8186.

33

Ran, Z. Q.; Shu, C. Z.; Hou, Z. Q.; Hei, P.; Yang, T. S.; Liang, R. X.; Li, J. B.; Long, J. P. Phosphorus vacancies enriched Ni2P nanosheets as efficient electrocatalyst for high-performance Li-O2 batteries. Electrochim. Acta 2020, 337, 135795.

34

Zhang, Q.; Zhang, W. B.; Ma, X. J.; Zhang, L.; Bao, X.; Guo, Y. W.; Long, J. P. Boosting pseudocapacitive energy storage performance via both phosphorus vacancy defect and charge injection technique over the CoP electrode. J. Alloys Compd. 2021, 864, 158106.

35

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

36

Huang, J. Q.; Guo, X. Y.; Du, X. Q.; Lin, X. Y.; Huang, J. Q.; Tan, H.; Zhu, Y.; Zhang, B. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 2019, 12, 1550–1557.

37

Sun, Y.; Shi, P. C.; Xiang, H. F.; Liang, X.; Yu, Y. High-safety nonaqueous electrolytes and interphases for sodium-ion batteries. Small 2019, 15, 1805479.

38

Li, H. J.; Hao, S. Y.; Tian, Z.; Zhao, Z. X.; Wang, X. M. Flexible self-supporting Ni2P@N-doped carbon anode for superior rate and durable sodium-ion storage. Electrochim. Acta 2019, 321, 134624.

39

Chen, S. Q.; Wu, F. X.; Shen, L. F.; Huang, Y. Y.; Sinha, S. K.; Srot, V.; van Aken, P. A.; Maier, J.; Yu, Y. Cross-linking hollow carbon sheet encapsulated CuP2 nanocomposites for high energy density sodium-ion batteries. ACS Nano 2018, 12, 7018–7027.

40

Duan, J.; Deng, S. Y.; Wu, W. Y.; Li, X.; Fu, H. Y.; Huang, Y. H.; Luo, W. Chitosan derived carbon matrix encapsulated CuP2 nanoparticles for sodium-ion storage. ACS Appl. Mater. Interfaces 2019, 11, 12415–12420.

41

Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502.

42

Zhao, W. X.; Ma, X. Q.; Wang, G. Z.; Long, X. J.; Li, Y. D.; Zhang, W. L.; Zhang, P. Carbon-coated CoP3 nanocomposites as anode materials for high-performance sodium-ion batteries. Appl. Surf. Sci. 2018, 445, 167–174.

43

Zhang, W.; Liu, D. W. Nitrogen-treated hierarchical macro-/mesoporous TiO2 used as anode materials for lithium ion batteries with high performance at elevated temperatures. Electrochim. Acta 2015, 156, 53–59.

44

Shen, L. F.; Zhang, X. G.; Uchaker, E.; Yuan, C. Z.; Cao, G. Z. Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2012, 2, 691–698.

45

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

46

Gao, S. J.; Shi, Z.; Zhang, W. B.; Zhang, F.; Jin, J. Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 2014, 8, 6344–6352.

47

Tai, Z. X.; Zhang, Q.; Liu, Y. J.; Liu, H. K.; Dou, S. X. Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 2017, 123, 54–61.

48

Wang, H. Q.; Zhang, W. C.; Liu, H. K.; Guo, Z. P. A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3992–3996.

49

Jiang, Y.; Zhou, X. F.; Li, D. J.; Cheng, X. L.; Liu, F. F.; Yu, Y. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv. Energy Mater. 2018, 8, 1800068.

Nano Research
Pages 2147-2156
Cite this article:
Wu L, Wang L, Cheng X, et al. Fluorine-induced dual defects in NiP2 anode with robust sodium storage performance. Nano Research, 2022, 15(3): 2147-2156. https://doi.org/10.1007/s12274-021-3852-7
Topics:

873

Views

16

Crossref

15

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 05 July 2021
Revised: 29 August 2021
Accepted: 30 August 2021
Published: 19 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return