AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin

Xiaowen Lu1,§Chunmu Guo2,§Mingyang Zhang1Leipeng Leng1J. Hugh Horton1,3Wei Wu2( )Zhijun Li1( )
Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
National Center for International Research on Catalytic Technology, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
Department of Chemistry, Queen′s University, Kingston, K7L 3N6, Canada

Show Author Information

Abstract

Chemoselective hydrodeoxygenation of vanillin is of great importance in converting biomass into high value-added chemicals. Herein, we describe a facile photochemical route to access palladium single atoms and clusters supported on silicoaluminophosphate-31 (SAPO-31) as a highly active, chemoselective, and reusable catalyst for hydrodeoxygenation of vanillin. Characterizations by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and CO-absorbed diffuse reflectance infrared Fourier transform spectroscopy reveal the atomically dispersed palladium single atoms and clusters are loosely bonded and randomly dispersed, without forming strong palladium-palladium metallic bonding, over the SAPO-31 support. This catalyst, with a full metal availability to the reactants, exhibits exceptional catalytic activity (TOF: 3,000 h−1, Yield: > 99%) in the hydrodeoxygenation of vanillin toward 2-methoxy-4-methylphenol (MMP) under mild conditions (1 atm, 80 °C, 30 min), along with excellent stability, scalability (up to 100-fold), and wide substrate scope. The superior catalytic performance can be attributed to the synergistic effect of the positively charged palladium single atoms and fully exposed clusters, as well as the strong metal-support interactions. This work may offer a new avenue for the design and synthesis of fully exposed metal catalysts with targeted functionalities.

Electronic Supplementary Material

Download File(s)
12274_2021_3857_MOESM1_ESM.pdf (1.7 MB)

References

1

Liu, L. C.; Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 2021, 6, 244–263.

2

Morgan, K.; Goguet, A.; Hardacre, C. Metal redispersion strategies for recycling of supported metal catalysts: A perspective. ACS Catal. 2015, 5, 3430–3445.

3

Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B. C.; Rahimpour, M. R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ. Sci. 2014, 7, 103–129.

4

Singh, A. K.; Jang, S.; Kim, J. Y.; Sharma, S.; Basavaraju, K. C.; Kim, M. G.; Kim, K. R.; Lee, J. S.; Lee, H. H.; Kim, D. P. One-pot defunctionalization of lignin-derived compounds by dual-functional Pd50Ag50/Fe3O4/N-rGo catalyst. ACS Catal. 2015, 5, 6964–6972.

5

Yue, X. K.; Zhang, L. H.; Sun, L. X.; Gao, S. T.; Gao, W.; Cheng, X.; Shang, N. Z.; Gao, Y. J.; Wang, C. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst. Appl. Catal. B: Environ. 2021, 293, 120243.

6

Nie, R. F.; Yang, H. H.; Zhang, H. F.; Yu, X. L.; Lu, X. H.; Zhou, D.; Xia, Q. H. Mild-temperature hydrodeoxygenation of vanillin over porous nitrogen-doped carbon black supported nickel nanoparticles. Green Chem. 2017, 19, 3126–3134.

7

Procházková, D.; Zámostný, P.; Bejblová, M.; Červený, L.; Čejka, J. Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts. Appl. Catal. A: Gen. 2007, 332, 56–64.

8

Huang, H.; Zong, R.; Li, H. Synergy effects between oxygen groups and defects in hydrodeoxygenation of biomass over a carbon nanosphere supported Pd catalyst. ACS Sustainable Chem. Eng. 2020, 8, 15998–16009.

9

Zhang, L. K.; Shang, N. Z.; Gao, S. T.; Wang, J. M.; Meng, T.; Du, C. C.; Shen, T. D.; Huang, J. Y.; Wu, Q. H.; Wang, H. J. et al. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics. ACS Catal. 2020, 10, 8672–8682.

10

Xu, X.; Li, Y.; Gong, Y. T.; Zhang, P. P.; Li, H. R.; Wang, Y. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J. Am. Chem. Soc. 2012, 134, 16987–16990.

11

Nie, R. F.; Peng, X. L.; Zhang, H. F.; Yu, X. L.; Lu, X. H.; Zhou, D.; Xia, Q. H. Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catal. Sci. Technol. 2017, 7, 627–634.

12

Yang, H. H.; Nie, R. F.; Xia, W.; Yu, X. L.; Jin, D. F.; Lu, X. H.; Zhou, D.; Xia, Q. H. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid. Green Chem. 2017, 19, 5714–5722.

13

Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

14

Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

15

Li, Z. J.; Wang, D. H.; Wu, Y.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

16

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

17

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

18
Li, Z. J.; Zhang, M. Y.; Zhang, L. L.; Dong, X. L.; Leng, L. P.; Horton, J. H.; Wang, J. Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Res. in press, DOI: 10.1007/s12274-021-3662-y.
19

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

20

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

21

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

22

Zhao, C.; Yu, H. Z.; Wang, J.; Che, W.; Li, Z. J.; Yao, T.; Yan, W. S.; Chen, M.; Yang, J.; Wei, S. Q. et al. A single palladium site catalyst as a bridge for converting homogeneous to heterogeneous in dimerization of terminal aryl acetylenes. Mater. Chem. Front. 2018, 2, 1317–1322.

23

Zhao, Y. F.; Zhou, H.; Chen, W. X.; Tong, Y. J.; Zhao, C.; Lin, Y.; Jiang, Z.; Zhang, Q. W.; Xue, Z. G.; Cheong, W. C. et al. Two-step carbothermal welding to access atomically dispersed Pd1 on three-dimensional zirconia nanonet for direct indole synthesis. J. Am. Chem. Soc. 2019, 141, 10590–10594.

24

Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y.; Mou, X. M. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.

25

Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.; Yuan, T. W.; Liu, W.; Wang, X. Q.; Cheong, W. C. et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

26

Corma, A.; Concepción, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; López-Quintela, M. A.; Buceta, D. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 2013, 5, 775–781.

27

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

28

Kwon, G.; Ferguson, G. A.; Heard, C. J.; Tyo, E. C.; Yin, C. R.; DeBartolo, J.; Seifert, S.; Winans, R. E.; Kropf, A. J.; Greeley, J. et al. Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 2013, 7, 5808–5817.

29

Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

30

Ding, S. P.; Chen, H. A.; Mekasuwandumrong, O.; Hülsey, M. J.; Fu, X. P.; He, Q.; Panpranot, J.; Yang, C. M.; Yan, N. High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Appl. Catal. B: Environ. 2021, 281, 119471.

31

Li, J. C.; Li, M.; Li, J.; Wang, S.; Li, G. B.; Liu, X. Hydrodechlorination and deep hydrogenation on single-palladium-atom-based heterogeneous catalysts. Appl. Catal. B: Environ. 2021, 282, 119518.

32

Li, J.; Zhou, Q. Y.; Yue, M. F.; Chen, S. G.; Deng, J. H.; Ping, X. Y.; Li, Y.; Li, J.; Liao, Q.; Shao, M. H. et al. Cross-linked multi-atom Pt catalyst for highly efficient oxygen reduction catalysis. Appl. Catal. B: Environ. 2021, 284, 119728.

33

Liu, H. B.; Xu, X. C.; Xu, H. X.; Wang, S. T.; Niu, Z. Q.; Jia, Q. H.; Yang, L.; Cao, R.; Zheng, L. R.; Cao, D. P. Dual active site tandem catalysis of metal hydroxyl oxides and single atoms for boosting oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 297, 120451.

34

Liu, W.; Yang, Y. S.; Chen, L. F.; Xu, E. Z.; Xu, J. M.; Hong, S.; Zhang, X.; Wei, M. Atomically-ordered active sites in NiMo intermetallic compound toward low-pressure hydrodeoxygenation of furfural. Appl. Catal. B: Environ. 2021, 282, 119569.

35

Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.

36

Perez-Aguilar, J. E.; Chen, C. Y.; Hughes, J. T.; Fang, C. Y.; Gates, B. C. Isostructural atomically dispersed rhodium catalysts supported on SAPO-37 and on HY zeolite. J. Am. Chem. Soc. 2020, 142, 11474–11485.

37

Sun, Q. M.; Wang, N.; Zhang, T. J.; Bai, R. S.; Mayoral, A.; Zhang, P.; Zhang, Q. H.; Terasaki, O.; Yu, J. H. Zeolite-encaged single-atom rhodium catalysts: Highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem., Int. Ed. 2019, 58, 18570–18576.

38

Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487.

39

Ma, J. W.; Li, Y. H.; Liu, J.; Zhao, Z.; Xu, C. M.; Wei, Y. C.; Song, W. Y.; Sun, Y. Q.; Zhang, X. Cu-SAPO-18 for NH3-SCR reaction: The effect of different aging temperatures on Cu2+ active sites and catalytic performances. Ind. Eng. Chem. Res. 2019, 58, 2389–2395.

40

Shen, B. Y.; Chen, X.; Fan, X. Y.; Xiong, H.; Wang, H. Q.; Qian, W. Z.; Wang, Y.; Wei, F. Resolving atomic SAPO-34/18 intergrowth architectures for methanol conversion by identifying light atoms and bonds. Nat. Commun. 2021, 12, 2212.

41

Sun, Q. M.; Xie, Z. K.; Yu, J. H. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl. Sci. Rev. 2018, 5, 542–558.

42

Wang, C.; Yang, M.; Tian, P.; Xu, S. T.; Yang, Y.; Wang, D. H.; Yuan, Y. Y.; Liu, Z. M. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J. Mater. Chem. A 2015, 3, 5608–5616.

43

Wang, J.; Kuang, Q.; Su, X. F.; Lu, X. W.; Leng, L. P.; Zhang, M. Y.; Guo, C. M.; Li, T.; Xu, Q.; Sun, S. H. et al. Isolated palladium atoms dispersed on silicoaluminophosphate-31 (SAPO-31) for the semihydrogenation of alkynes. ACS Appl. Nano Mater. 2021, 4, 861–868.

44

Sun, Q. M.; Wang, N.; Bai, R. S.; Hui, Y.; Zhang, T. J.; Do, D. A.; Zhang, P.; Song, L. J.; Miao, S.; Yu, J. H. Synergetic effect of ultrasmall metal clusters and zeolites promoting hydrogen generation. Adv. Sci. 2019, 6, 1802350.

45

Fu, F. Y.; Xiang, J.; Cheng, H.; Cheng, L. J.; Chong, H. B.; Wang, S. X.; Li, P.; Wei, S. Q.; Zhu, M. Z.; Li, Y. D. A robust and efficient Pd3 cluster catalyst for the suzuki reaction and its odd mechanism. ACS Catal. 2017, 7, 1860–1867.

46

Fu, J. H.; Dong, J. H.; Si, R.; Sun, K. J.; Zhang, J. Y.; Li, M. R.; Yu, N. N.; Zhang, B. S.; Humphrey, M. G.; Fu, Q. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021, 11, 1952–1961.

47

Wang, D. X.; Liu, J. C.; Cheng, X. S.; Kang, X.; Wu, A. P.; Tian, C. G.; Fu, H. G. Trace Pt clusters dispersed on SAPO-11 promoting the synergy of metal sites with acid sites for high-effective hydroisomerization of n-alkanes. Small Methods 2019, 3, 1800510.

48

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

49

Mondelli, C.; Gözaydın, G.; Yan, N.; Pérez-Ramírez, J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem. Soc. Rev. 2020, 49, 3764–3782.

50

Su, Y. Q.; Liu, J. X.; Filot, I. A. W.; Hensen, E. J. M. Theoretical study of ripening mechanisms of Pd clusters on ceria. Chem. Mater. 2017, 29, 9456–9462.

51

Hu, F. L.; Leng, L. P.; Zhang, M. Y.; Chen, W. X.; Yu, Y. L.; Wang, J.; Horton, J. H.; Li, Z. J. Direct synthesis of atomically dispersed palladium atoms supported on graphitic carbon nitride for efficient selective hydrogenation reactions. ACS Appl. Mater. Interfaces 2020, 12, 54146–54154.

52

Chen, Q. Z.; Yang, Y.; Luo, H.; Liu, Z. H.; Tong, Z. F.; Tao, C. Y.; Du, J. Ce regulated surface properties of Mn/SAPO-34 for improved NH3-SCR at low temperature. RSC Adv. 2020, 10, 40047–40054.

53

Wang, P. L.; Yan, L. J.; Gu, Y. D.; Kuboon, S.; Li, H. R.; Yan, T. T.; Shi, L. Y.; Zhang, D. S. Poisoning-resistant NOx reduction in the presence of alkaline and heavy metals over H-SAPO-34-supported Ce-promoted Cu-based catalysts. Environ. Sci. Technol. 2020, 54, 6396–6405.

54

Raveendra, G.; Li, C. M.; Cheng, Y.; Meng, F. H.; Li, Z. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts. New J. Chem. 2018, 42, 4419–4431.

55

Chen, X. S.; Jiang, R. L.; Zhou, Z. H.; Wang, X. W. Synthesis of SAPO-34 zeolite from laponite and its application in the MTO reaction. Eur. J. Inorg. Chem. 2020, 22, 2170–2176.

56

Hu, L. Q.; Cheng, J.; Li, Y. N.; Liu, J. Z.; Zhang, L.; Zhou, J. H.; Cen, K. F. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes. Appl. Surf. Sci. 2017, 410, 249–258.

57

Lou, Y.; Cai, Y. F.; Hu, W. D.; Wang, L.; Dai, Q. G.; Zhan, W. C.; Guo, Y. L.; Hu, P.; Cao, X. M.; Liu, J. Y. et al. Identification of active area as active center for CO oxidation over single Au atom catalyst. ACS Catal. 2020, 10, 6094–6101.

58

Zhu, M. M.; Du, X. L.; Zhao, Y.; Mei, B. B.; Zhang, Q.; Sun, F. F.; Jiang, Z.; Liu, Y. M.; He, H. Y.; Cao, Y. Ring-opening transformation of 5-hydroxymethylfurfural using a golden single-atomic-site palladium catalyst. ACS Catal. 2019, 9, 6212–6222.

59

Liu, Y. W.; Li, Z.; Yu, Q. Y.; Chen, Y. F.; Chai, Z. W.; Zhao, G. F.; Liu, S. J.; Cheong, W. C.; Pan, Y.; Zhang, Q. H. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 2019, 141, 9305–9311.

Nano Research
Pages 4347-4355
Cite this article:
Lu X, Guo C, Zhang M, et al. Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano Research, 2021, 14(11): 4347-4355. https://doi.org/10.1007/s12274-021-3857-2
Topics:

945

Views

55

Crossref

52

Web of Science

53

Scopus

5

CSCD

Altmetrics

Received: 19 July 2021
Revised: 27 August 2021
Accepted: 31 August 2021
Published: 09 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return