Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The formation pathway of aqueous-phase colloidal semiconductor magic-size clusters (MSCs) remains unrevealed. In the present work, we demonstrate, for the first time, a precursor compound (PC)-enabled formation pathway of aqueous-phase CdSe MSCs exhibiting a sharp absorption peaking at about 420 nm (MSC-420). The CdSe MSC-420 is synthesized with CdCl2 and selenourea as the respective Cd and Se sources, and with 3-mercaptopropionic acid or L-cysteine as a ligand. Absorption featureless CdSe PCs form first in the aqueous reaction batches, which transform to MSC-420 in the presence of primary amines. The coordination between primary amine and Cd2+ on PCs may be responsible to the PC-to-MSC transformation. Upon increasing the reactant concentrations or decreasing the CdCl2-ligand feed molar ratios, the Cd precursor self-assembles into large aggregates, which may encapsulate the resulting CdSe PCs and inhibit their transformation to MSC-420. The present study sheds essential light on the syntheses and formation mechanisms of nanocrystals.
Wan, W. S.; Zhang, M.; Zhao, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Kreouzis, T.; Fan, H. S.; Huang, W.; Yu, K. Room-temperature formation of CdS magic-size clusters in aqueous solutions assisted by primary amines. Nat. Commun. 2020, 11, 4199.
He, L.; Luan, C. R.; Rowell, N.; Zhang, M.; Chen, X. Q.; Yu, K. Transformations among colloidal semiconductor magic-size clusters. Acc. Chem. Res. 2021, 54, 776–786.
Zhu, J. M.; Cao, Z. P.; Zhu, Y. C.; Rowell, N.; Li, Y.; Wang, S. L.; Zhang, C. C.; Jiang, G.; Zhang, M.; Zeng, J. R. et al. Transformation pathway from CdSe magic-size clusters with absorption doublets at 373/393 nm to clusters at 434/460 nm. Angew. Chem., Int. Ed. 2021, 60, 20358–20365.
Shen, Q.; Luan, C. R.; Rowell, N.; Zhang, M.; Wang, K.; Willis, M.; Chen, X. Q.; Yu, K. Reversible transformations at room temperature among three types of CdTe magic-size clusters. Inorg. Chem. 2021, 60, 4243–4251.
Palencia, C.; Yu, K.; Boldt, K. The future of colloidal semiconductor magic-size clusters. ACS Nano 2020, 14, 1227–1235.
Zhang, H.; Luan, C. R.; Gao, D.; Zhang, M.; Rowell, N.; Willis, M.; Chen, M.; Zeng, J. R.; Fan, H. S.; Huang, W. et al. Room-temperature formation pathway for CdTeSe alloy magic-size clusters. Angew. Chem., Int. Ed. 2020, 59, 16943–16952.
Chen, M.; Luan, C. R.; Zhang, M.; Rowell, N.; Willis, M.; Zhang, C. C.; Wang, S. L.; Zhu, X. H.; Fan, H. S.; Huang, W. et al. Evolution of CdTe magic-size clusters with single absorption doublet assisted by adding small molecules during prenucleation. J. Phys. Chem. Lett. 2020, 11, 2230–2240.
Li, L. J.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Lu, J.; Fan, H. S.; Huang, W.; Chen, X. Q. et al. Fragmentation of magic-size cluster precursor compounds into ultrasmall CdS quantum dots with enhanced particle yield at low temperatures. Angew. Chem., Int. Ed. 2020, 59, 12013–12021.
Liu, S. P.; Yu, Q. Y.; Zhang, C. C.; Zhang, M.; Rowell, N.; Fan, H. S.; Huang, W.; Yu, K.; Liang, B. Transformation of ZnS precursor compounds to magic-size clusters exhibiting optical absorption peaking at 269 nm. J. Phys. Chem. Lett. 2020, 11, 75–82.
Gao, D.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H. S.; Zhang, H.; Zhang, C. C.; Jiang, Y. N. et al. Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nat. Commun. 2019, 10, 1674.
Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666.
Luan, C. R.; Tang, J. B.; Rowell, N.; Zhang, M.; Huang, W.; Fan, H. S.; Yu, K. Four types of CdTe magic-size clusters from one prenucleation stage sample at room temperature. J. Phys. Chem. Lett. 2019, 10, 4345–4353.
Luan, C.; Gökçinar, Ö. Ö.; Rowell, N.; Kreouzis, T.; Han, S.; Zhang, M.; Fan, H. S.; Yu, K. Evolution of two types of CdTe magic-size clusters from a single induction period sample. J. Phys. Chem. Lett. 2018, 9, 5288–5295.
Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.
Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.
Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735.
Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.
Zhang, J.; Li, L. J.; Rowell, N.; Kreouzis, T.; Willis, M.; Fan, H. S.; Zhang, C. C.; Huang, W.; Zhang, M.; Yu, K. One-step approach to single-ensemble CdS magic-size clusters with enhanced production yields. J. Phys. Chem. Lett. 2019, 10, 2725–2732.
Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499.
Liu, Z. M.; Shao, C. Y.; Jin, B.; Zhang, Z. S.; Zhao, Y. Q.; Xu, X. R.; Tang, R. K. Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature 2019, 574, 394–398.
Dey, A.; Bomans, P. H. H.; Müller, F. A.; Will, J.; Frederik, P. M.; de With, G.; Sommerdijk, N. A. J. M. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat. Mater. 2010, 9, 1010–1014.
Han, J. S.; Luo, X. T.; Zhou, D.; Sun, H. Z.; Zhang, H.; Yang, B. Growth kinetics of aqueous CdTe nanocrystals in the presence of simple amines. J. Phys. Chem. C 2010, 114, 6418–6425.
Zhou, D.; Lin, M.; Chen, Z. L.; Sun, H. Z.; Zhang, H.; Sun, H. C.; Yang, B. Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem. Mater. 2011, 23, 4857–4862.
Lesnyak, V.; Gaponik, N.; Eychmuller, A. Colloidal semiconductor nanocrystals: The aqueous approach. Chem. Soc. Rev. 2013, 42, 2905–2929.
Zhou, D.; Liu, M.; Lin, M.; Bu, X. Y.; Luo, X. T.; Zhang, H.; Yang, B. Hydrazine-mediated construction of nanocrystal self-assembly materials. ACS Nano 2014, 8, 10569–10581.
Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.
Yao, D.; Liu, Y.; Li, J.; Zhang, H. Advances in green colloidal synthesis of metal selenide and telluride quantum dots. Chin. Chem. Lett. 2019, 30, 277–284.
Aires, A.; Möller, M.; Cortajarena, A. L. Protein design for the synthesis and stabilization of highly fluorescent quantum dots. Chem. Mater. 2020, 32, 5729–5738.
Mrad, M.; Ben Chaabane, T.; Rinnert, H.; Lavinia, B.; Jasniewski, J.; Medjahdi, G.; Schneider, R. Aqueous synthesis for highly emissive 3-mercaptopropionic acid-capped AIZS quantum dots. Inorg. Chem. 2020, 59, 6220–6231.
Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Aqueous phase synthesized CdSe nanoparticles with well-defined numbers of constituent atoms. J. Phys. Chem. C 2010, 114, 18834–18840.
Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Takeda, M.; Ohuchi, N.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Size-selective growth and stabilization of small CdSe nanoparticles in aqueous solution. ACS Nano 2010, 4, 121–128.
Kurihara, T.; Matano, A.; Noda, Y.; Takegoshi, K. Rotational motion of ligand-cysteine on CdSe magic-sized clusters. J. Phys. Chem. C 2019, 123, 14993–14998.
Baker, J. S.; Nevins, J. S.; Coughlin, K. M.; Colón, L. A.; Watson, D. F. Influence of complex-formation equilibria on the temporal persistence of cysteinate-functionalized CdSe nanocrystals in water. Chem. Mater. 2011, 23, 3546–3555.
Kurihara, T.; Noda, Y.; Takegoshi, K. Quantitative solid-state NMR study on ligand-surface interaction in cysteine-capped CdSe magic-sized clusters. J. Phys. Chem. Lett. 2017, 8, 2555–2559.
Kurihara, T.; Noda, Y.; Takegoshi, K. Capping structure of ligand-cysteine on CdSe magic-sized clusters. ACS Omega 2019, 4, 3476–3483.
Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.
Cammi, R.; Mennucci, B.; Tomasi, J. Fast evaluation of geometries and properties of excited molecules in solution: A Tamm-Dancoff model with application to 4-dimethylaminobenzonitrile. J. Phys. Chem. A 2000, 104, 5631–5637.
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Uniform treatment of solute-solvent dispersion in the ground and excited electronic states of the solute based on a solvation model with state-specific polarizability. J. Chem. Theory Comput. 2013, 9, 3649–3659.
Wang, C. L.; Zhang, H.; Zhang, J. H.; Lv, N.; Li, M. J.; Sun, H. Z.; Yang, B. Ligand dynamics of aqueous CdTe nanocrystals at room temperature. J. Phys. Chem. C 2008, 112, 6330–6336.
Wurmbrand, D.; Fischer, J. W. A.; Rosenberg, R.; Boldt, K. Morphogenesis of anisotropic nanoparticles: Self-templating via non-classical, fibrillar Cd2Se intermediates. Chem. Commun. 2018, 54, 7358–7361.
Kirkwood, N.; Boldt, K. Protic additives determine the pathway of CdSe nanocrystal growth. Nanoscale 2018, 10, 18238–18248.
Zhang, M.; Fives, C.; Waldron, K. C.; Zhu, X. X. Self-assembly of a bile acid dimer in aqueous solutions: From nanofibers to nematic hydrogels. Langmuir 2017, 33, 1084–1089.
Zhang, M.; Ma, Z. Y.; Wang, K. J.; Zhu, X. X. CO2 sequestration by bile salt aqueous solutions and formation of supramolecular hydrogels. ACS Sustainable Chem. Eng. 2019, 7, 3949–3955.
Chen, Y. L.; Luo, J. T.; Zhu, X. X. Fluorescence study of inclusion complexes between star-shaped cholic acid derivatives and polycyclic aromatic fluorescent probes and the size effects of host and guest molecules. J. Phys. Chem. B 2008, 112, 3402–3409.
Luo, J. T.; Chen, Y. L.; Zhu, X. X. Invertible amphiphilic molecular pockets made of cholic acid. Langmuir 2009, 25, 10913–10917.
Shavel, A.; Gaponik, N.; Eychmüller, A. Factors governing the quality of aqueous CdTe nanocrystals: Calculations and experiment. J. Phys. Chem. B 2006, 110, 19280–19284.
Jalilehvand, F.; Leung, B. O.; Mah, V. Cadmium(II) complex formation with cysteine and penicillamine. Inorg. Chem. 2009, 48, 5758–5771.