AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation

Mukhtar Lawan Adam1,2,5,§Hongen Zhu1,§Zhanfeng Liu1Shengtao Cui1Pengjun Zhang1Yi Liu1Guobin Zhang1Xiaojun Wu2( )Zhe Sun1,3,4( )Li Song1( )
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei230029, China
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, School of Chemistry and Materials Sciences, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
CAS key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
Physics Department, Bayero University, Kano 700231, Nigeria

§ Mukhtar Lawan Adam and Hongen Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Taking advantage of the unique layered structure of TiSe2, the intrinsic electronic properties of two-dimensional materials can easily be tuned via heteroatomic engineering. Herein, we show that the charge density wave (CDW) phase in 1T-TiSe2 single-crystals can be gradually suppressed through Sn atoms intercalation. Using angle-resolved photoemission spectroscopy (ARPES) and temperature-dependent resistivity measurements, this work reveals that Sn atoms can induce charge doping and modulate the intrinsic electronic properties in the host 1T-TiSe2. Notably, our temperature-dependent ARPES results highlight the role exciton-phonon interaction and the Jahn-Teller mechanism through the formation of backfolded bands and exhibition of a downward Se shift of 4p valence band in the formation of CDW in this material.

References

1

Zhao, J. F.; Ou, H. W; Wu, G.; Xie, B. P.; Zhang, Y.; Shen, D. W.; Wei, J.; Yang, L. X.; Dong, J. K.; Arita, M. et al. Evolution of the electronic structure of 1T-CuxTiSe2. Phys. Rev. Lett. 2007, 99, 146401.

2

Bussmann-Holder, A.; Bishop, A. R. Suppression of charge-density formation in TiSe2 by Cu doping. Phys. Rev. B 2009, 79, 024302.

3

Qian, D.; Hsieh, D.; Wray, L.; Morosan, E.; Wang, N. L.; Xia, Y.; Cava, R. J.; Hasan, M. Z. Emergence of Fermi pockets in a new excitonic charge-density-wave melted superconductor. Phys. Rev. Lett. 2007, 98, 117007.

4

Li, L. J.; O’Farrell, E. C. T.; Loh, K. P.; Eda, G.; Özyilmaz, B.; Neto, A. H. C. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185–189.

5

Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544–550.

6

Kolekar, S.; Bonilla, M.; Diaz, H. C.; Hashimoto, M.; Lu, D. H.; Batzill, M. Controlling the charge density wave transition in monolayer TiSe2: Substrate and doping effects. Adv. Quantum Technol. 2018, 1, 1800070.

7

Sugawara, K.; Nakata, Y.; Shimizu, R.; Han, P.; Hitosugi, T.; Sato, T.; Takahashi, T. Unconventional charge-density-wave transition in monolayer 1T-TiSe2. ACS Nano 2016, 10, 1341–1345.

8

Liu, G. X.; Debnath, B.; Pope, T. R.; Salguero, T. T.; Lake, R. K.; Balandin, A. A. A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature. Nat. Nanotechnol. 2016, 11, 845–850.

9

Khitun, A. G.; Geremew, A. K.; Balandin, A. A. Transistor-less logic circuits implemented with 2-D charge density wave devices. IEEE Electron Device Lett. 2018, 39, 1449–1452.

10

Sun, Y.; Dai, T. He. Z. H.; Zhou, W. Q.; Hu, P.; Li, S. W.; Wu, S. X. Memristive phase switching in two-dimensional 1T’-VSe2 crystals. Appl. Phys. Lett. 2020, 116, 033101.

11

Zhu, C.; Chen, Y.; Liu, F. C.; Zheng, S. J.; Li, X. B.; Chaturvedi, A.; Zhou, J. D.; Fu, Q. D.; He, Y. M.; Zeng, Q. S. et al. Light-tunable 1T-TaS2 charge-density-wave oscillators. ACS Nano 2018, 12, 11203–11210.

12

Yan, D.; Lin, Y. S.; Wang, G. H.; Zhu, Z.; Wang, S., Shi, L.; He, Y.; Li, M. R.; Zheng, H.; Ma, J. et al. The unusual suppression of superconducting transition temperature in double-doping 2H-NbSe2. Supercond. Sci. Technol. 2019, 32, 085008.

13

Luo, H. X.; Krizan, J. W.; Seibel, E. M.; Xie, W. W.; Sahasrabudhe, G. S.; Bergman, S. L.; Phelan, B. F.; Tao. J.; Wang, Z.; Zhang, J. D. et al. Cr-doped TiSe2-A layered dichalcogenide spin glass. Chem. Mater. 2015, 27, 6810–6817.

14

Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

15

Adam, M. L.; Bala, A. A. Superconductivity in quasi-2D InTaX2 (X = S, Se) type-II Weyl semimetals. J. Phys.: Condens. Matter. 2021, 33, 225502.

16

Wang, R.; Zhou, J. B.; Wang, X. S.; Xie, L. M.; Zhao, J. M.; Qiu, X. H. Layer-dependent charge density wave phase transition stiffness in 1T-TaS2 nanoflakes evidenced by ultrafast carrier dynamics. Nano Res. 2021, 14, 1162–1166.

17

Di Salvo, F. J.; Moncton, D. E.; Waszczak, J. V. Electronic properties and superlattice formation in the semimetal TiSe2. Phys. Rev. B 1976, 14, 4321–4328.

18

Adam, M. L.; Bala, A. A. Prediction of phonon-mediated superconductivity and charge density wave in charge doped 1T-HfTe2. Comput. Condens. Matter 2021, 26, e00527.

19

Umemoto, Y.; Sugawara, K.; Nakata, Y.; Takahashi, T.; Sato, T. Pseudogap, Fermi arc, and Peierls-insulating phase induced by 3D-2D crossover in monolayer VSe2. Nano Res. 2019, 12, 165–169.

20

von Boehm, J.; Isomaki, H. M. Relativistic p-d gaps of 1T TiSe2, TiS2, ZrSe2 and ZrS2. J. Phys. C: Solid State Phys. 1982, 15, L733–L737.

21

Zunger, A.; Freeman, A. J. Band structure and lattice instability of TiSe2. Phys. Rev. B 1978, 17, 1839–1842.

22

Fang, C. M.; de Groot, R. A.; Haas, C. Bulk and surface electronic structure of 1T-TiS2 and 1T-TiSe2. Phys. Rev. B 1997, 56, 4455–4463.

23

Isomaki, H.; von Boehm, J. The gaps of the ideal TiS2 and TiSe2. J. Phys. C:Solid State Phys. 1981, 14, L75–L80.

24
Wilson, J. A. Modelling the contrasting semimetallic characters of TiS2 and TiSe2. Phys. Status Solidi (b) 1978, 86, 11–36.https://doi.org/10.1002/pssb.2220860102
25

Wilson, J. A. Concerning the semimetallic characters of TiS2 and TiSe2. Solid State Commun. 1977, 22, 551–553.

26

van Wezel, J.; Nahai-Williamson, P.; Saxena, S. S. Exciton-phonon-driven charge density wave in TiSe2. Phys. Rev. B 2010, 81, 165109.

27

Monney, C.; Cercellier, H.; Battaglia, C.; Schwier, E. F.; Didiot, C.; Garnier, M. G.; Beck, H.; Aebi, P. Temperature dependence of the excitonic insulator phase model in 1T-TiSe2. Phys. B:Condens. Matter 2009, 404, 3172–3175.

28

Monney, C.; Cercellier, H.; Clerc, F.; Battaglia, C.; Schwier, E. F.; Didiot, C.; Garnier, M. G.; Beck, H.; Aebi, P.; Berger, H. et al. Spontaneous exciton condensation in 1T-TiSe2: BCS-like approach. Phys. Rev. B 2009, 79, 045116.

29

Wegner, A.; Zhao, J.; Li, J.; Yang, J.; Anikin, A. A.; Karapetrov, G.; Esfarjani, K.; Louca, D.; Chatterjee, U. Evidence for pseudo-Jahn-Teller distortions in the charge density wave phase of 1T-TiSe2. Phys. Rev. B 2020, 101, 195145.

30

Hughes, H. P. Structural distortion in TiSe2 and related materials—A possible Jahn-Teller effect. J. Phys. C:Solid State Phys. 1977, 10, L319–L323.

31

Whangbo, M. H.; Canadell, E. Analogies between the concepts of molecular chemistry and solid-state physics concerning structural instabilities. Electronic origin of the structural modulations in layered transition metal dichalcogenides. J. Am. Chem. Soc. 1992, 114, 9587–9600.

32

van Wezel, J.; Nahai-Williamson, P.; Saxena, S. S. An alternative interpretation of recent ARPES measurements on TiSe2. Europhys. Lett. 2010, 89, 47004.

33

Hedayat, H.; Sayers, C. J.; Bugini, D.; Dallera, C.; Wolverson, D.; Batten, T.; Karbassi, S.; Friedemann, S.; Cerullo, G.; van Wezel, J. et al. Excitonic and lattice contributions to the charge density wave in 1T-TiSe2 revealed by a phonon bottleneck. Phys. Rev. Res. 2019, 1, 023029.

34

Huang, S. H.; Shu, G. J.; Pai, W. W.; Liu, H. L.; Chou, F. C. Tunable Se vacancy defects and the unconventional charge density wave in 1T-TiSe2−δ. Phys. Rev. B 2017, 95, 045310.

35

Rossnagel, K.; Kipp, L.; Skibowski, M. Charge-density-wave phase transition in 1T-TiSe2: Excitonic insulator versus band-type Jahn-Teller mechanism. Phys. Rev. B 2017, 65, 235101.

36

van Wezel, J.; Nahai-Williamson, P.; Saxena, S. S. Exciton-phonon interactions and superconductivity bordering charge order in TiSe2. Phys. Rev. B 2011, 83, 024502.

37

Yablonskikh, M. V.; Shkvarin, A. S.; Yarmoshenko, Y. M.; Skorikov, N. A.; Titov, A. N. Resonant photoemission at the L3 absorption edge of Mn and Ti and the electronic structure of 1T-Mn0.2TiSe2. J. Phys. Condens. Matter 2012, 24, 045504.

38

Shkvarin, A. S.; Yarmoshenko, Y. M.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. A.; Zhukov, Y. M.; Titov, A. N. The electronic structure formation of CuxTiSe2 in a wide range (0.04 < x < 0.8) of copper concentration. J. Chem. Phys. 2016, 144, 074702.

39

Adam, M. L.; Liu, Z. F.; Moses, O. A.; Wu, X. J.; Song, L. Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2. Nano Res. 2021, 14, 2613–2619.

40

Shkvarin, A. S.; Yarmoshenko, Y. M.; Merentsov, A. I.; Zhukov, Y. M.; Titov, A. A.; Shkvarina, E. G.; Titov, A. N. Electronic structure of NixTiSe2 (0.05 ≤ x ≤ 0.46) compounds with ordered and disordered Ni. Phys. Chem. Chem. Phys. 2017, 19, 4500–4506.

41

Yarmoshenko, Y. M.; Shkvarin, A. S.; Yablonskikh, M. V.; Merentsov, A. I.; Titov, A. N. Localization of charge carriers in layered crystals MexTiSe2 (Me = Cr, Mn, Cu) studied by the resonant photoemission. J. Appl. Phys. 2013, 114, 133704.

42

Maksimov, V. I.; Baranov, N. V.; Pleschov, V. G.; Inoue, K. Influence of the Mn intercalation on magnetic properties of TiSe2. J. Alloys Compd. 2004, 384, 33–38.

43

Titov, A. A.; Balakirev, V. F.; Volegov, A. S.; Titov, A. N. Magnetic susceptibility of titanium diselenide intercalated with copper. Phys. Solid State 2012, 54, 1173–1175.

44

Shkvarin, A. S.; Yarmoshenko, Y. M.; Skorikov, N. A.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. N. Electronic structure of titanium dichalcogenides TiX2 (X = S, Se, Te). J. Exp. Theor. Phys. 2012, 114, 150–156.

45

Shkvarin, A. S.; Yarmoshenko, Y. M.; Skorikov, N. A.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. N. Resonance photoelectron spectroscopy of TiX2 (X = S, Se, Te) titanium dichalcogenides. J. Exp. Theor. Phys. 2012, 115, 798–804.

46

Wang, G. F.; Li, J. H.; Lv, K. G.; Zhang, W. J.; Ding, X.; Yang, G. Z.; Liu, X. Y.; Jiang, X. Q. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Sci. Rep. 2016, 6, 31769.

47

Sun, L. F.; Chen, C. H.; Zhang, Q. H.; Sohrt, C.; Zhao, T. Q.; Xu, G. C.; Wang, J. H.; Wang, D.; Rossnagel, K.; Gu, L. et al. Suppression of the charge density wave state in two-dimensional 1T-TiSe2 by atmospheric oxidation. Angew. Chem., Int. Ed. 2017, 56, 8981–8985.

Nano Research
Pages 2643-2649
Cite this article:
Lawan Adam M, Zhu H, Liu Z, et al. Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation. Nano Research, 2022, 15(3): 2643-2649. https://doi.org/10.1007/s12274-021-3859-0
Topics:

1044

Views

10

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 09 July 2021
Revised: 31 August 2021
Accepted: 01 September 2021
Published: 12 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return