Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-entropy-oxides (HEOs), a new class of solids that contain five or more elemental species, have attracted increasing interests owing to their unique structures and fascinating physicochemical properties. However, it is a huge challenge to construct various nanostructured, especially low-dimensional nanostructured HEOs under the high temperature synthetic conditions. Herein, a facile strategy using glucose-urea deep eutectic solvent (DES) as both a solvent and the carbon source of structure-directed template is proposed for the synthesis of various HEOs with two-dimentional (2D) nanonets and one-dimentional (1D) nanowires, including rock-salt (Co, Cu, Mg, Ni, Zn)O, spinel (Co, Cr, Fe, Mn, Ni)3O4, and perovskite La(Co, Cr, Fe, Mn, Ni)O3. The as-prepared HEOs possessed five or more uniformly dispersed metal elements, large specific surface areas (more than 25 m2·g−1), and a pure single-phase structure. In addition, high cooling rate (cooling in air or liq-N2-quenching) was indispensable to obtain a single-phase rock-salt (Co, Cu, Mg, Ni, Zn)O because of phase separation caused by copper. By taking advantage of unique features of HEOs, rock-salt (Co, Cu, Mg, Ni, Zn)O can function as a promising candidate for lithium-ion batteries (LIBs) anode material, which achieved excellent cycling stability. This work provides a feasible synthetic strategy for low-dimensional hierarchical HEOs, which creates new opportunities for the stable HEOs being highly active functional materials.
Lei, Z. F.; Liu, X. J.; Wang, H.; Wu, Y.; Jiang, S. H.; Lu, Z. P. Development of advanced materials via entropy engineering. Scr. Mater. 2019, 165, 164–169.
Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.
Chen, Z. J.; Zhang, T.; Gao, X. Y.; Huang, Y. J.; Qin, X. H.; Wang, Y. F.; Zhao, K.; Peng, X.; Zhang, C.; Liu, L. et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution. Adv. Mater. 2021, 33, 2101845.
Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.
Jin, T.; Sang, X. H.; Unocic, R. R.; Kinch, R. T.; Liu, X. F.; Hu, J.; Liu, H. L.; Dai, S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 2018, 30, 1707512.
Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485.
Fu, M. S.; Ma, X.; Zhao, K. N.; Li, X.; Su, D. High-entropy materials for energy-related applications. iScience 2021, 24, 102177.
Yuan, Y.; Wu, Y.; Yang, Z.; Liang, X.; Lei, Z. F.; Huang, H. L.; Wang, H.; Liu, X. J.; An, K.; Wu, W. et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 2019, 7, 225–231.
Singh, A.; Basha, D. A.; Matsushita, Y.; Tsuchiya, K.; Lu, Z. P.; Nieh, T. G.; Mukai, T. Domain structure and lattice effects in a severely plastically deformed CoCrFeMnNi high entropy alloy. J. Alloys Compd. 2020, 812, 152028.
Lee, D. H.; Lee, J. A.; Zhao, Y. K.; Lu, Z. P.; Suh, J. Y.; Kim, J. Y.; Ramamurty, U.; Kawasaki, M.; Langdon, T. G.; Jang, J. I. Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A nanomechanical analysis. Acta Mater. 2017, 140, 443–451.
Chen, K. P.; Pei, X. T.; Tang, L.; Cheng, H. R.; Li, Z. M.; Li, C. W.; Zhang, X. W.; An, L. N. A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. 2018, 38, 4161–4164.
Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Danielewski, M.; Martin, M. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 2018, 216, 32–36.
Sarkar, A.; Djenadic, R.; Wang, D.; Hein, C.; Kautenburger, R.; Clemens, O.; Hahn, H. Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 2018, 38, 2318–2327.
Wang, D. D.; Liu, Z. J.; Du, S. Q.; Zhang, Y. Q.; Li, H.; Xiao, Z. H.; Chen, W.; Chen, R.; Wang, Y. Y.; Zou, Y. Q. et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216.
Dippo, O. F.; Mesgarzadeh, N.; Harrington, T. J.; Schrader, G. D.; Vecchio, K. S. Bulk high-entropy nitrides and carbonitrides. Sci. Rep. 2020, 10, 21288.
Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.
McCormick, C. R.; Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 2021, 143, 1017–1023.
Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Wang, Y. Q.; Mu, T. C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042.
Qiao, H. Y.; Wang, X. Z.; Dong, Q.; Zheng, H. K.; Chen, G.; Hong, M.; Yang, C. P.; Wu, M. L.; He, K.; Hu, L. B. A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy 2021, 86, 106029.
Wang, T.; Chen, H.; Yang, Z. Z.; Liang, J. Y.; Dai, S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 2020, 142, 4550–4554.
Gild, J.; Zhang, Y. Y.; Harrington, T.; Jiang, S. C.; Hu, T.; Quinn, M. C.; Mellor, W. M.; Zhou, N. X.; Vecchio, K.; Luo, J. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 2016, 6, 37946.
Liu, D.; Wen, T. Q.; Ye, B. L.; Chu, Y. H. Synthesis of superfine high-entropy metal diboride powders. Scr. Mater. 2019, 167, 110–114.
Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q. S.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H. et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.
Zheng, Y. N.; Yi, Y. K.; Fan, M. H.; Liu, H. Y.; Li, X.; Zhang, R.; Li, M. T.; Qiao, Z. A. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 2019, 23, 678–683.
Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.
Mao, A. Q.; Quan, F.; Xiang, H. Z.; Zhang, Z. G.; Kuramoto, K.; Xia, A. L. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J. Mol. Struct. 2019, 1194, 11–18.
Bérardan, D.; Franger, S.; Dragoe, D.; Meena, A. K.; Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi RRL-Rapid Res. Lett. 2016, 10, 328–333.
Ghigna, P.; Airoldi, L.; Fracchia, M.; Callegari, D.; Anselmi-Tamburini, U.; D'Angelo, P.; Pianta, N.; Ruffo, R.; Cibin, G.; de Souza, D. O. et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study. ACS Appl. Mater. Interfaces 2020, 12, 50344–50354.
Nguyen, T. X.; Patra, J.; Chang, J. K.; Ting, J. M. High entropy spinel oxide nanoparticles for superior lithiation-delithiation performance. J. Mater. Chem. A 2020, 8, 18963–18973.
Bérardan, D.; Franger, S.; Meena, A. K.; Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 2016, 4, 9536–9541.
Mao, A. Q.; Xiang, H. Z.; Zhang, Z. G.; Kuramoto, K.; Yu, H. Y.; Ran, S. L. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. J. Magn. Magn. Mater. 2019, 484, 245–252.
Djenadic, R.; Sarkar, A.; Clemens, O.; Loho, C.; Botros, M.; Chakravadhanula, V. S. K.; Kübel, C.; Bhattacharya, S. S.; Gandhi, A. S.; Hahn, H. Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 2017, 5, 102–109.
Sarkar, A.; Djenadic, R.; Usharani, N. J.; Sanghvi, K. P.; Chakravadhanula, V. S. K.; Gandhi, A. S.; Hahn, H.; Bhattacharya, S. S. Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 2017, 37, 747–754.
Feng, D. Y.; Dong, Y. B.; Zhang, L. L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. A. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem., Int. Ed. 2020, 59, 19503–19509.
Sun, Y. F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600.
Cong, L. N.; Xie, H. M.; Li, J. H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1601906.
Tan, X. H.; Guo, L. M.; Liu, S. N.; Wu, J. X.; Zhao, T. Q.; Ren, J. C.; Liu, Y. L.; Kang, X. H.; Wang, H. F.; Sun, L. F. et al. A general one-pot synthesis strategy of 3D porous hierarchical networks crosslinked by monolayered nanoparticles interconnected nanoplates for lithium ion batteries. Adv. Funct. Mater. 2019, 29, 1903003.
Cao, H. L.; Zhou, X. F.; Zheng, C.; Liu, Z. P. Two-dimensional porous micro/nano metal oxides templated by graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 11984–11990.
Green, D. C.; Glatzel, S.; Collins, A. M.; Patil, A. J.; Hall, S. R. A new general synthetic strategy for phase-pure complex functional materials. Adv. Mater. 2012, 24, 5767–5772.
Rong, K.; Wei, J. L.; Huang, L.; Fang, Y. X.; Dong, S. J. Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis. Nanoscale 2020, 12, 20719–20725.
Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082.
Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71.
Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chem., Int. Ed. 2013, 52, 3074–3085.
Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W. et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021, 121, 1232–1285.
Wang, Q.; Dong, B. H.; Zhao, Y. Q.; Huang, F.; Xie, J. F.; Cui, G. W.; Tang, B. Controllable green synthesis of crassula peforata-like TiO2 with high photocatalytic activity based on deep eutectic solvent (DES). Chem. Eng. J. 2018, 348, 811–819.
Wagle, D. V.; Zhao, H.; Baker, G. A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res. 2014, 47, 2299–2308.
Abo-Hamad, A.; Hayyan, M.; AlSaadi, M. A.; Hashim, M. A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 2015, 273, 551–567.
Ge, X.; Gu, C. D.; Wang, X. L.; Tu, J. P. Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: Challenges, opportunities, and future vision. J. Mater. Chem. A 2017, 5, 8209–8229.
Liu, Y.; Friesen, J. B.; McAlpine, J. B.; Lankin, D. C.; Chen, S. N.; Pauli, G. F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod. 2018, 81, 679–690.
Sushil, J.; Kumar, A.; Gautam, A.; Ahmad, I. High entropy phase evolution and fine structure of five component oxide (Mg, Co, Ni, Cu, Zn)O by citrate gel method. Mater. Chem. Phys. 2021, 259, 124014.
Berardan, D.; Meena, A. K.; Franger, S.; Herrero, C.; Dragoe, N. Controlled jahn-teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 2017, 704, 693–700.
Dragoe, N.; Bérardan, D. Order emerging from disorder. Science 2019, 366, 573–574.
Pitike, K. C.; Santosh, K. C.; Eisenbach, M.; Bridges, C. A.; Cooper, V. R. Predicting the phase stability of multicomponent high-entropy compounds. Chem. Mater. 2020, 32, 7507–7515.
Zhou, Y. L.; Zhang, M.; Wang, Q.; Yang, J.; Luo, X. Y.; Li, Y. L.; Du, R.; Yan, X. S.; Sun, X. Q.; Dong, C. F. et al. Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res. 2020, 13, 691–700.
Song, H. Q.; Liu, F.; Luo, M. S. Insights into the stable and fast lithium storage performance of oxygen-deficient LiV3O8 nanosheets. Nano Res. 2021, 14, 814–822.
Chen, H.; Yang, D.; Zhuang, X.; Chen, D.; Liu, W.; Zhang, Q.; Hng, H. H.; Rui, X.; Yan, Q.; Huang, S. Superior wide-temperature lithium storage in a porous cobalt vanadate. Nano Res. 2020, 13, 1867–1874.
Lu, Y.; Yu, L.; Lou, X. W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018, 4, 972–996.
Qiu, N.; Chen, H.; Yang, Z. M.; Sun, S.; Wang, Y.; Cui, Y. H. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 2019, 777, 767–774.
Lökçü, E.; Toparli, Ç.; Anik, M. Electrochemical performance of (MgCoNiZn)1−xLixO high-entropy oxides in lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 23860–23866.
Wang, D.; Jiang, S. D.; Duan, C. Q.; Mao, J.; Dong, Y.; Dong, K. Z.; Wang, Z. Y.; Luo, S. H.; Liu, Y. G.; Qi, X. W. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 2020, 844, 156158.
Wang, Q. S.; Sarkar, A.; Li, Z. Y.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B. High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem. Commun. 2019, 100, 121–125.
Wang, J. B.; Cui, Y. Y.; Wang, Q. S.; Wang, K.; Huang, X. H.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S. S. et al. Lithium containing layered high entropy oxide structures. Sci. Rep. 2020, 10, 18430.
Wang, Q. S.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T. et al. Multi-anionic and -cationic compounds: New high entropy materials for advanced li-ion batteries. Energy Environ. Sci. 2019, 12, 2433–2442.
Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386.
Fan, X. L.; Shao, J.; Xiao, X. Z.; Chen, L. X.; Wang, X. H.; Li, S. Q.; Ge, H. W. Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 14641–14648.