AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides

Jiale Wei1,2Kai Rong1,2Xiaolong Li1,2Yuchen Wang1,2Zhen-An Qiao3Youxing Fang1( )Shaojun Dong1,2( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
Show Author Information

Graphical Abstract

Abstract

High-entropy-oxides (HEOs), a new class of solids that contain five or more elemental species, have attracted increasing interests owing to their unique structures and fascinating physicochemical properties. However, it is a huge challenge to construct various nanostructured, especially low-dimensional nanostructured HEOs under the high temperature synthetic conditions. Herein, a facile strategy using glucose-urea deep eutectic solvent (DES) as both a solvent and the carbon source of structure-directed template is proposed for the synthesis of various HEOs with two-dimentional (2D) nanonets and one-dimentional (1D) nanowires, including rock-salt (Co, Cu, Mg, Ni, Zn)O, spinel (Co, Cr, Fe, Mn, Ni)3O4, and perovskite La(Co, Cr, Fe, Mn, Ni)O3. The as-prepared HEOs possessed five or more uniformly dispersed metal elements, large specific surface areas (more than 25 m2·g−1), and a pure single-phase structure. In addition, high cooling rate (cooling in air or liq-N2-quenching) was indispensable to obtain a single-phase rock-salt (Co, Cu, Mg, Ni, Zn)O because of phase separation caused by copper. By taking advantage of unique features of HEOs, rock-salt (Co, Cu, Mg, Ni, Zn)O can function as a promising candidate for lithium-ion batteries (LIBs) anode material, which achieved excellent cycling stability. This work provides a feasible synthetic strategy for low-dimensional hierarchical HEOs, which creates new opportunities for the stable HEOs being highly active functional materials.

References

1

Lei, Z. F.; Liu, X. J.; Wang, H.; Wu, Y.; Jiang, S. H.; Lu, Z. P. Development of advanced materials via entropy engineering. Scr. Mater. 2019, 165, 164–169.

2

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

3

Chen, Z. J.; Zhang, T.; Gao, X. Y.; Huang, Y. J.; Qin, X. H.; Wang, Y. F.; Zhao, K.; Peng, X.; Zhang, C.; Liu, L. et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution. Adv. Mater. 2021, 33, 2101845.

4

Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.

5

Jin, T.; Sang, X. H.; Unocic, R. R.; Kinch, R. T.; Liu, X. F.; Hu, J.; Liu, H. L.; Dai, S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 2018, 30, 1707512.

6

Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485.

7

Fu, M. S.; Ma, X.; Zhao, K. N.; Li, X.; Su, D. High-entropy materials for energy-related applications. iScience 2021, 24, 102177.

8

Yuan, Y.; Wu, Y.; Yang, Z.; Liang, X.; Lei, Z. F.; Huang, H. L.; Wang, H.; Liu, X. J.; An, K.; Wu, W. et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 2019, 7, 225–231.

9

Singh, A.; Basha, D. A.; Matsushita, Y.; Tsuchiya, K.; Lu, Z. P.; Nieh, T. G.; Mukai, T. Domain structure and lattice effects in a severely plastically deformed CoCrFeMnNi high entropy alloy. J. Alloys Compd. 2020, 812, 152028.

10

Lee, D. H.; Lee, J. A.; Zhao, Y. K.; Lu, Z. P.; Suh, J. Y.; Kim, J. Y.; Ramamurty, U.; Kawasaki, M.; Langdon, T. G.; Jang, J. I. Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A nanomechanical analysis. Acta Mater. 2017, 140, 443–451.

11

Chen, K. P.; Pei, X. T.; Tang, L.; Cheng, H. R.; Li, Z. M.; Li, C. W.; Zhang, X. W.; An, L. N. A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. 2018, 38, 4161–4164.

12

Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Danielewski, M.; Martin, M. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 2018, 216, 32–36.

13

Sarkar, A.; Djenadic, R.; Wang, D.; Hein, C.; Kautenburger, R.; Clemens, O.; Hahn, H. Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 2018, 38, 2318–2327.

14

Wang, D. D.; Liu, Z. J.; Du, S. Q.; Zhang, Y. Q.; Li, H.; Xiao, Z. H.; Chen, W.; Chen, R.; Wang, Y. Y.; Zou, Y. Q. et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216.

15

Dippo, O. F.; Mesgarzadeh, N.; Harrington, T. J.; Schrader, G. D.; Vecchio, K. S. Bulk high-entropy nitrides and carbonitrides. Sci. Rep. 2020, 10, 21288.

16

Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.

17

McCormick, C. R.; Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 2021, 143, 1017–1023.

18

Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Wang, Y. Q.; Mu, T. C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042.

19

Qiao, H. Y.; Wang, X. Z.; Dong, Q.; Zheng, H. K.; Chen, G.; Hong, M.; Yang, C. P.; Wu, M. L.; He, K.; Hu, L. B. A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy 2021, 86, 106029.

20

Wang, T.; Chen, H.; Yang, Z. Z.; Liang, J. Y.; Dai, S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 2020, 142, 4550–4554.

21

Gild, J.; Zhang, Y. Y.; Harrington, T.; Jiang, S. C.; Hu, T.; Quinn, M. C.; Mellor, W. M.; Zhou, N. X.; Vecchio, K.; Luo, J. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 2016, 6, 37946.

22

Liu, D.; Wen, T. Q.; Ye, B. L.; Chu, Y. H. Synthesis of superfine high-entropy metal diboride powders. Scr. Mater. 2019, 167, 110–114.

23

Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q. S.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H. et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.

24

Zheng, Y. N.; Yi, Y. K.; Fan, M. H.; Liu, H. Y.; Li, X.; Zhang, R.; Li, M. T.; Qiao, Z. A. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 2019, 23, 678–683.

25

Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.

26

Mao, A. Q.; Quan, F.; Xiang, H. Z.; Zhang, Z. G.; Kuramoto, K.; Xia, A. L. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J. Mol. Struct. 2019, 1194, 11–18.

27

Bérardan, D.; Franger, S.; Dragoe, D.; Meena, A. K.; Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi RRL-Rapid Res. Lett. 2016, 10, 328–333.

28

Ghigna, P.; Airoldi, L.; Fracchia, M.; Callegari, D.; Anselmi-Tamburini, U.; D'Angelo, P.; Pianta, N.; Ruffo, R.; Cibin, G.; de Souza, D. O. et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study. ACS Appl. Mater. Interfaces 2020, 12, 50344–50354.

29

Nguyen, T. X.; Patra, J.; Chang, J. K.; Ting, J. M. High entropy spinel oxide nanoparticles for superior lithiation-delithiation performance. J. Mater. Chem. A 2020, 8, 18963–18973.

30

Bérardan, D.; Franger, S.; Meena, A. K.; Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 2016, 4, 9536–9541.

31

Mao, A. Q.; Xiang, H. Z.; Zhang, Z. G.; Kuramoto, K.; Yu, H. Y.; Ran, S. L. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. J. Magn. Magn. Mater. 2019, 484, 245–252.

32

Djenadic, R.; Sarkar, A.; Clemens, O.; Loho, C.; Botros, M.; Chakravadhanula, V. S. K.; Kübel, C.; Bhattacharya, S. S.; Gandhi, A. S.; Hahn, H. Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 2017, 5, 102–109.

33

Sarkar, A.; Djenadic, R.; Usharani, N. J.; Sanghvi, K. P.; Chakravadhanula, V. S. K.; Gandhi, A. S.; Hahn, H.; Bhattacharya, S. S. Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 2017, 37, 747–754.

34

Feng, D. Y.; Dong, Y. B.; Zhang, L. L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. A. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem., Int. Ed. 2020, 59, 19503–19509.

35

Sun, Y. F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600.

36

Cong, L. N.; Xie, H. M.; Li, J. H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1601906.

37

Tan, X. H.; Guo, L. M.; Liu, S. N.; Wu, J. X.; Zhao, T. Q.; Ren, J. C.; Liu, Y. L.; Kang, X. H.; Wang, H. F.; Sun, L. F. et al. A general one-pot synthesis strategy of 3D porous hierarchical networks crosslinked by monolayered nanoparticles interconnected nanoplates for lithium ion batteries. Adv. Funct. Mater. 2019, 29, 1903003.

38

Cao, H. L.; Zhou, X. F.; Zheng, C.; Liu, Z. P. Two-dimensional porous micro/nano metal oxides templated by graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 11984–11990.

39

Green, D. C.; Glatzel, S.; Collins, A. M.; Patil, A. J.; Hall, S. R. A new general synthetic strategy for phase-pure complex functional materials. Adv. Mater. 2012, 24, 5767–5772.

40

Rong, K.; Wei, J. L.; Huang, L.; Fang, Y. X.; Dong, S. J. Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis. Nanoscale 2020, 12, 20719–20725.

41

Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082.

42

Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71.

43

Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chem., Int. Ed. 2013, 52, 3074–3085.

44

Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W. et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021, 121, 1232–1285.

45

Wang, Q.; Dong, B. H.; Zhao, Y. Q.; Huang, F.; Xie, J. F.; Cui, G. W.; Tang, B. Controllable green synthesis of crassula peforata-like TiO2 with high photocatalytic activity based on deep eutectic solvent (DES). Chem. Eng. J. 2018, 348, 811–819.

46

Wagle, D. V.; Zhao, H.; Baker, G. A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res. 2014, 47, 2299–2308.

47

Abo-Hamad, A.; Hayyan, M.; AlSaadi, M. A.; Hashim, M. A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 2015, 273, 551–567.

48

Ge, X.; Gu, C. D.; Wang, X. L.; Tu, J. P. Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: Challenges, opportunities, and future vision. J. Mater. Chem. A 2017, 5, 8209–8229.

49

Liu, Y.; Friesen, J. B.; McAlpine, J. B.; Lankin, D. C.; Chen, S. N.; Pauli, G. F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod. 2018, 81, 679–690.

50

Sushil, J.; Kumar, A.; Gautam, A.; Ahmad, I. High entropy phase evolution and fine structure of five component oxide (Mg, Co, Ni, Cu, Zn)O by citrate gel method. Mater. Chem. Phys. 2021, 259, 124014.

51

Berardan, D.; Meena, A. K.; Franger, S.; Herrero, C.; Dragoe, N. Controlled jahn-teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 2017, 704, 693–700.

52

Dragoe, N.; Bérardan, D. Order emerging from disorder. Science 2019, 366, 573–574.

53

Pitike, K. C.; Santosh, K. C.; Eisenbach, M.; Bridges, C. A.; Cooper, V. R. Predicting the phase stability of multicomponent high-entropy compounds. Chem. Mater. 2020, 32, 7507–7515.

54

Zhou, Y. L.; Zhang, M.; Wang, Q.; Yang, J.; Luo, X. Y.; Li, Y. L.; Du, R.; Yan, X. S.; Sun, X. Q.; Dong, C. F. et al. Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res. 2020, 13, 691–700.

55

Song, H. Q.; Liu, F.; Luo, M. S. Insights into the stable and fast lithium storage performance of oxygen-deficient LiV3O8 nanosheets. Nano Res. 2021, 14, 814–822.

56

Chen, H.; Yang, D.; Zhuang, X.; Chen, D.; Liu, W.; Zhang, Q.; Hng, H. H.; Rui, X.; Yan, Q.; Huang, S. Superior wide-temperature lithium storage in a porous cobalt vanadate. Nano Res. 2020, 13, 1867–1874.

57

Lu, Y.; Yu, L.; Lou, X. W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018, 4, 972–996.

58

Qiu, N.; Chen, H.; Yang, Z. M.; Sun, S.; Wang, Y.; Cui, Y. H. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 2019, 777, 767–774.

59

Lökçü, E.; Toparli, Ç.; Anik, M. Electrochemical performance of (MgCoNiZn)1−xLixO high-entropy oxides in lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 23860–23866.

60

Wang, D.; Jiang, S. D.; Duan, C. Q.; Mao, J.; Dong, Y.; Dong, K. Z.; Wang, Z. Y.; Luo, S. H.; Liu, Y. G.; Qi, X. W. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 2020, 844, 156158.

61

Wang, Q. S.; Sarkar, A.; Li, Z. Y.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B. High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem. Commun. 2019, 100, 121–125.

62

Wang, J. B.; Cui, Y. Y.; Wang, Q. S.; Wang, K.; Huang, X. H.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S. S. et al. Lithium containing layered high entropy oxide structures. Sci. Rep. 2020, 10, 18430.

63

Wang, Q. S.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T. et al. Multi-anionic and -cationic compounds: New high entropy materials for advanced li-ion batteries. Energy Environ. Sci. 2019, 12, 2433–2442.

64

Zou, F.; Chen, Y. M.; Liu, K. W.; Yu, Z. T.; Liang, W. F.; Bhaway, S. M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386.

65

Fan, X. L.; Shao, J.; Xiao, X. Z.; Chen, L. X.; Wang, X. H.; Li, S. Q.; Ge, H. W. Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 14641–14648.

Nano Research
Pages 2756-2763
Cite this article:
Wei J, Rong K, Li X, et al. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides. Nano Research, 2022, 15(3): 2756-2763. https://doi.org/10.1007/s12274-021-3860-7
Topics:

1001

Views

40

Crossref

42

Web of Science

44

Scopus

5

CSCD

Altmetrics

Received: 15 July 2021
Revised: 29 August 2021
Accepted: 02 September 2021
Published: 05 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return