Graphical Abstract

Oxidative stress leads to chondrocyte apoptosis and extracellular matrix (ECM) degradation, thus contributing to the pathogenesis of osteoarthritis (OA). Herein, curcumin with remarkable antioxidant and anti-inflammatory activities has been employed as an organic ligand to coordinate ferric ions for enhancing the water-solubility and biocompatibility of natural product curcumin. The obtained iron-curcumin-based coordination nanoparticles (Fe-Cur NPs) exhibit great water-solubility and efficient reactive oxygen/nitrogen species (ROS/RNS) scavenging ability. In vitro chondrocyte evaluation experiments indicated that the intracellular ROS/RNS induced by interleukin 1β (IL-1β) could be efficiently scavenged by these Fe-Cur NPs and oxidative-stress-induced cell death could be preserved as well. In addition, post intra-articular (i.a.) injection into OA rat joints, Fe-Cur NPs could greatly inhibit OA progression via activating the nuclear factor-erythroid 2 related factor-2 (Nrf2) and inhibiting nod-like receptor protein-3 (NLRP3) inflammasome activation in primary rat chondrocytes, as well as decrease the production of matrix degrading proteases and other inflammatory mediators. The efficient antioxidation and anti-inflammation performance of Fe-Cur NPs endow them as a promising nanoplatform for treatment of various inflammatory diseases, and more detailed researches will be conducted in the future.
Chen, D.; Shen, J.; Zhao, W. W.; Wang, T. Y.; Han, L.; Hamilton, J.; Im, H. J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044.
Hunter, D. J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759.
Morales-Ivorra, I.; Romera-Baures, M.; Roman-Viñas, B.; Serra-Majem, L. Osteoarthritis and the mediterranean diet: A systematic review. Nutrients 2018, 10, 1030.
Loeser, R.; Collins, J. A.; Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 412–420.
Pan, X. X.; Chen, T. T.; Zhang, Z. J.; Chen, X. W.; Chen, C. S.; Chen, L.; Wang, X. Y.; Ying, X. Z. Activation of Nrf2/HO-1 signal with myricetin for attenuating ECM degradation in human chondrocytes and ameliorating the murine osteoarthritis. Int. Immunopharmacol. 2019, 75, 105742.
Wojdasiewicz, P.; Poniatowski, Ł. A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459.
Loeser, R. F. Aging and osteoarthritis: The role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartilage 2009, 17, 971–979.
Li, D.; Wang, W. C.; Xie, G. R. Reactive oxygen species: The 2-edged sword of osteoarthritis. Am. J. Med. Sci. 2012, 344, 486–490.
Kang, C. S.; Jung, E.; Hyeon, H.; Seon, S.; Lee, D. Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomedicine:Nanotechnol., Biol. Med. 2020, 23, 102104.
Bannuru, R. R.; Osani, M. C.; Al-Eid, F.; Wang, C. C. Efficacy of curcumin and Boswellia for knee osteoarthritis: Systematic review and meta-analysis. Semin. Arthritis Rheum. 2018, 48, 416–429.
Shi, S. R.; Tian, T. R.; Li, Y. J.; Xiao, D. X.; Zhang, T.; Gong, P.; Lin, Y. F. Tetrahedral framework nucleic acid inhibits chondrocyte apoptosis and oxidative stress through activation of autophagy. ACS Appl. Mater. Interfaces 2020, 12, 56782–56791.
Liang, R. M.; Zhao, J. M.; Li, B.; Cai, P. A.; Loh, X. J.; Xu, C. H.; Chen, P.; Kai, D.; Zheng, L. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 2020, 230, 119601.
Zhu, D. C.; Wang, Y. H.; Lin, J. H.; Miao, Z. M.; Xu, J. J.; Wu, Y. S. Maltol inhibits the progression of osteoarthritis via the nuclear factor-erythroid 2-related factor-2/heme oxygenase-1 signal pathway in vitro and in vivo. Food Funct. 2021, 12, 1327–1337.
Lee, D. Y.; Park, Y. J.; Song, M. G.; Kim, D. R.; Zada, S.; Kim, D. H. Cytoprotective effects of delphinidin for human chondrocytes against oxidative stress through activation of autophagy. Antioxidants 2020, 9, 83.
Ansari, M. Y.; Ahmad, N.; Haqqi, T. M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed. Pharmacother. 2020, 129, 110452.
Cuadrado, A.; Rojo, A. I.; Wells, G.; Hayes, J. D.; Cousin, S. P.; Rumsey, W. L.; Attucks, O. C.; Franklin, S.; Levonen, A. L.; Kensler, T. W. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 2019, 18, 295–317.
Bollong, M. J.; Lee, G.; Coukos, J. S.; Yun, H.; Zambaldo, C.; Chang, J. W.; Chin, E. N.; Ahmad, I.; Chatterjee, A. K. et al. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature 2018, 562, 600–604.
Bambouskova, M.; Gorvel, L.; Lampropoulou, V.; Sergushichev, A.; Loginicheva, E.; Johnson, K.; Korenfeld, D.; Mathyer, M. E.; Kim, H.; Huang, L. H. et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature 2018, 556, 501–504.
Nguyen, T.; Sherratt, P. J.; Huang, H. C.; Yang, C. S.; Pickett, C. B. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 2003, 278, 4536–4541.
Tkachev, V. O.; Menshchikova, E. B.; Zenkov, N. K. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry 2011, 76, 407–422.
Poulet, B.; Beier, F. Targeting oxidative stress to reduce osteoarthritis. Arthritis Res. Ther. 2016, 18, 32.
Zhang, X.; Zhang, J. H.; Chen, X. Y.; Hu, Q. H.; Wang, M. X.; Jin, R.; Zhang, Q. Y.; Wang, W.; Wang, R.; Kang, L. L. et al. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid. Redox Signaling 2015, 22, 848–870.
Luo, J. F.; Shen, X. Y.; Lio, C. K.; Dai, Y.; Cheng, C. S.; Liu, J. X.; Yao, Y. D.; Yu, Y.; Xie, Y.; Luo, P. et al. Activation of Nrf2/HO-1 pathway by nardochinoid C inhibits inflammation and oxidative stress in lipopolysaccharide-stimulated macrophages. Front. Pharmacol. 2018, 9, 911.
Choi, R. J.; Cheng, M. S.; Kim, Y. S. Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury. Redox Biol. 2014, 2, 504–512.
Rosillo, M. A.; Sánchez-Hidalgo, M.; González-Benjumea, A.; Fernández-Bolaños, J. G.; Lubberts, E.; Alarcón-de-la-Lastra, C. Preventive effects of dietary hydroxytyrosol acetate, an extra virgin olive oil polyphenol in murine collagen-induced arthritis. Mol. Nutr. Food Res. 2015, 59, 2537–2546.
Wu, W. J.; Jia, W. W.; Liu, X. H.; Pan, L. L.; Zhang, Q. Y.; Yang, D.; Shen, X. Y.; Liu, L.; Zhu, Y. Z. S-propargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway. Redox Biol. 2016, 10, 157–167.
McAllister, M. J.; Chemaly, M.; Eakin, A. J.; Gibson, D. S.; McGilligan, V. E. NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthritis Cartilage 2018, 26, 612–619.
Scanzello, C. R.; Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone 2012, 51, 249–257.
Du, L.; Wang, J.; Chen, Y. B.; Li, X. Z.; Wang, L.; Li, Y.; Jin, X. P.; Gu, X. K.; Hao, M.; Zhu, X. et al. Novel biphenyl diester derivative AB-38b inhibits NLRP3 inflammasome through Nrf2 activation in diabetic nephropathy. Cell Biol. Toxicol. 2020, 36, 243–260.
Zhong, X. Y.; Wang, X. W.; Zhan, G. T.; Tang, Y. A.; Yao, Y. Z.; Dong, Z. L.; Hou, L. Q.; Zhao, H.; Zeng, S. J.; Hu, J. et al. NaCeF4: Gd, Tb scintillator as an X-ray responsive photosensitizer for multimodal imaging-guided synchronous radio/radiodynamic therapy. Nano Lett. 2019, 19, 8234–8244.
Ising, C.; Venegas, C.; Zhang, S. S.; Scheiblich, H.; Schmidt, S. V.; Vieira-Saecker, A.; Schwartz, S.; Albasset, S.; McManus, R. M.; Tejera, D. et al. NLRP3 inflammasome activation drives tau pathology. Nature 2019, 575, 669–673.
Luo, B. B.; Huang, F.; Liu, Y. L.; Liang, Y. Y.; Wei, Z.; Ke, H. H.; Zeng, Z. Y.; Huang, W. Q.; He, Y. NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy. Front. Physiol. 2017, 8, 519.
Martinon, F.; Tschopp, J. Inflammatory caspases and inflammasomes: Master switches of inflammation. Cell Death Differ. 2007, 14, 10–22.
Zheng, S. C.; Zhu, X. X.; Xue, Y.; Zhang, L. H.; Zou, H. J.; Qiu, J. H.; Liu, Q. Role of the NLRP3 inflammasome in the transient release of IL-1β induced by monosodium urate crystals in human fibroblast-like synoviocytes. J. Inflamm. 2015, 12, 30.
Samir, P.; Kesavardhana, S.; Patmore, D. M.; Gingras, S.; Malireddi, R. K. S.; Karki, R.; Guy, C. S.; Briard, B.; Place, D. E.; Bhattacharya, A. et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature 2019, 573, 590–594.
Zhou, J. T.; Zhao, Y. N.; Wu, G. W.; Lin, B. B.; Li, Z. F.; Liu, X. X. Differential miRNAomics of the synovial membrane in knee osteoarthritis induced by bilateral anterior cruciate ligament transection in rats. Mol. Med. Rep. 2018, 18, 4051–4057.
Vaamonde-García, C.; Loureiro, J.; Valcárcel-Ares, M. N.; Riveiro-Naveira, R. R.; Ramil-Gómez, O.; Hermida-Carballo, L.; Centeno, A.; Meijide-Failde, R.; Blanco, F. J.; López-Armada, M. J. The mitochondrial inhibitor oligomycin induces an inflammatory response in the rat knee joint. BMC Musculoskelet Disord. 2017, 18, 254.
Cai, D. W.; Yin, S. S.; Yang, J.; Jiang, Q.; Cao, W. S. Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis. Arthritis Res. Ther. 2015, 17, 269.
Shin, J. W.; Chun, K. S.; Kim, D. H.; Kim, S. J.; Kim, S. H.; Cho, N. C.; Na, H. K.; Surh, Y. J. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Biochem. Pharmacol. 2020, 173, 113820.
Lu, Y.; Wu, S.; Xiang, B.; Li, L.; Lin, Y. Curcumin attenuates oxaliplatin-induced liver injury and oxidative stress by activating the Nrf2 pathway. Drug Des., Devel. Ther. 2020, 14, 73–85.
Feng, K.; Ge, Y. W.; Chen, Z. X.; Li, X. D.; Liu, Z. Q.; Li, X. L.; Li, H.; Tang, T. T.; Yang, F.; Wang, X. Q. Curcumin inhibits the PERK-eIF2 α-CHOP pathway through promoting SIRT1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model. Oxid. Med. Cell. Longev. 2019, 2019, 8574386.
Zhang, Z.; Leong, D. J.; Xu, L.; He, Z. Y.; Wang, A.; Navati, M.; Kim, S. J.; Hirsh, D. M.; Hardin, J. A.; Cobelli, N. J. et al. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res. Ther. 2016, 18, 128.
Freigang, S.; Ampenberger, F.; Spohn, G.; Heer, S.; Shamshiev, A. T.; Kisielow, J.; Hersberger, M.; Yamamoto, M.; Bachmann, M. F.; Kopf, M. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur. J. Immunol. 2011, 41, 2040–2051.