AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanomaterials for neurodegenerative diseases: Molecular mechanisms guided design and applications

Tianzhong Li1,2,§Xueyan Hou2,§Yu Qi3,§Xiaohan Duan2Pengcheng Yan3Haoru Zhu3Zhongjian Xie4( )Han Zhang2( )
Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen 518038, China

§ Tianzhong Li, Xueyan Hou, and Yu Qi contributed equally to this work.

Show Author Information

Graphical Abstract

In this review, the typical characteristics and pathogenesis of common neurodegenerative diseases are firstly introduced. Also, recent advancement of nanomaterials for neurological applications which facilitate the precise targeting to central nervous system is emphasized, together with possible solutions for future improvements.

Abstract

Successful treatment of neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), remains a significant challenge for neurologists due to the undesirable curative outcomes. Apart from surgeries, most drugs are only used to relieve the patients’ symptoms without a permanent cure of the disease. The development of novel biomaterials targeting NDDs is greatly hindered by the limited understanding of underlying molecular mechanisms. Considering the difficulties in NDD drug development and clinical trials, a comprehensive and up-to-date review of disease pathogenesis and related novel therapies are needed. In the current article, the basic concepts and pathogenic characteristics of NDDs are firstly illustrated. Following the detailed description of molecular mechanisms underlying three common NDDs, recent advances of drug development based on targeting different pathogenic mechanisms are clarified. Hopefully, this review will be beneficial to address the gap between materials and targeted mechanisms while simultaneously provide suggestions for the future design of precise NDD medicine.

References

1

Ransohoff, R. M. How neuroinflammation contributes to neurodegeneration. Science 2016, 353, 777–783.

2

Dwivedi, N.; Shah, J.; Mishra, V.; Amin, M. C. I. M.; Iyer, A. K.; Tekade, R. K.; Kesharwani, P. Dendrimer-mediated approaches for the treatment of brain tumor. J. Biomater. Sci., Polym. Ed. 2016, 27, 557–580.

3

Neuwelt, E.; Abbott, N. J.; Abrey, L.; Banks, W. A.; Blakley, B.; Davis, T.; Engelhardt, B.; Grammas, P.; Nedergaard, M.; Nutt, J. et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008, 7, 84–96.

4

Workman, M. J.; Svendsen, C. N. Recent advances in human iPSC-derived models of the blood−brain barrier. Fluids Barriers CNS 2020, 17, 30.

5

Bellat, V.; Alcaina, Y.; Tung, C. H.; Ting, R.; Michel, A. O.; Souweidane, M.; Law, B. A combined approach of convection-enhanced delivery of peptide nanofiber reservoir to prolong local DM1 retention for diffuse intrinsic pontine glioma treatment. Neuro-Oncol. 2020, 22, 1495–1504.

6

Di Marco, A.; Vignone, D.; Paz, O. G.; Fini, I.; Battista, M. R.; Cellucci, A.; Bracacel, E.; Auciello, G.; Veneziano, M.; Khetarpal, V. et al. Establishment of an in vitro human blood-brain barrier model derived from induced pluripotent stem cells and comparison to a porcine cell-based system. Cells 2020, 9, 994.

7

Ochekpe, N. A.; Olorunfemi, P. O.; Ngwuluka, N. C. Nanotechnology and drug delivery part 1: Background and applications. Trop. J. Pharm. Res. 2009, 8, 265–274.

8

Xie, J. B.; Shen, Z. Y.; Anraku, Y.; Kataoka, K.; Chen, X. Y. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019, 224, 119491.

9

Gatteschi, D.; Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem., Int. Ed 2003, 42, 268–297.

10

Kumar, A.; Ahluwalia, P. K. Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement. Phys. B:Condens. Matter 2012, 407, 4627–4634.

11

Wu, X. L.; Yang, H.; Yang, W. T.; Chen, X. M.; Gao, J. X.; Gong, X. Q.; Wang, H. J.; Duan, Y.; Wei, D. H.; Chang, J. Nanoparticle-based diagnostic and therapeutic systems for brain tumors. J. Mater. Chem. B 2019, 7, 4734–4750.

12

Afzal, M.; Ameeduzzafar; Alharbi, K. S.; Alruwaili, N. K.; Al-Abassi, F. A.; Al-Malki, A. A. L.; Kazmi, I.; Kumar, V.; Kamal, M. A.; Nadeem, M. S. et al. Nanomedicine in treatment of breast cancer-A challenge to conventional therapy. Semin. Cancer Biol. 2019, 69, 279–292.

13

Martinelli, C.; Pucci, C.; Battaglini, M.; Marino, A.; Ciofani, G. Antioxidants and nanotechnology: Promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases. Adv. Healthc. Mater. 2020, 9, 1901589.

14

Qu, M. Y.; Jiang, X.; Zhou, X. W.; Wang, C. R.; Wu, Q. Z.; Ren, L.; Zhu, J. X.; Zhu, S. S.; Tebon, P.; Sun, W. J. et al. Stimuli-responsive delivery of growth factors for tissue engineering. Adv. Healthc. Mater. 2020, 9, 1901714.

15

Alipour, M.; Baneshi, M.; Hosseinkhani, S.; Mahmoudi, R.; Arabzadeh, A. J.; Akrami, M.; Mehrzad, J.; Bardania, H. Recent progress in biomedical applications of RGD-based ligand: From precise cancer theranostics to biomaterial engineering: A systematic review. J. Biomed. Mater. Res. Part A 2020, 108, 839–850.

16

Khan, H.; Mirzaei, H. R.; Amiri, A.; Akkol, E. K.; Halimi, S. M. A.; Mirzaei, H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin. Cancer Biol. 2021, 69, 24–42.

17

Qiao, S. P.; Liu, Y.; Han, F. T.; Guo, M.; Hou, X. L.; Ye, K. R.; Deng, S.; Shen, Y. J.; Zhao, Y. F.; Wei, H. Y. et al. An intelligent neural stem cell delivery system for neurodegenerative diseases treatment. Adv. Healthc. Mater. 2018, 7, 1800080.

18

Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; López-Iglesias, C.; Teixidó, M. et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012, 33, 7194–7205.

19

Mahmoudi, M.; Akhavan, O.; Ghavami, M.; Rezaee, F.; Ghiasi, S. M. A. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 2012, 4, 7322–7325.

20

Chen, W. S.; Ouyang, J.; Yi, X. Y.; Xu, Y.; Niu, C. C.; Zhang, W. Y.; Wang, L. Q.; Sheng, J. P.; Deng, L.; Liu, Y. N. et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 2018, 30, 1703458.

21

Tao, W.; Ji, X. Y.; Zhu, X. B.; Li, L.; Wang, J. Q.; Zhang, Y.; Saw, P. E.; Li, W. L.; Kong, N.; Islam, M. A. et al. Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 2018, 30, 1802061.

22

Ji, X. Y.; Kong, N.; Wang, J. Q.; Li, W. L.; Xiao, Y. L.; Gan, S. T.; Zhang, Y.; Li, Y. J.; Song, X. R.; Xiong, Q. Q. et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 1803031.

23

Liang, X.; Ye, X. Y.; Wang, C.; Xing, C. Y.; Miao, Q. W.; Xie, Z. J.; Chen, X. L.; Zhang, X. D.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 2019, 296, 150–161.

24

Krol, S. Challenges in drug delivery to the brain: Nature is against us. J. Control. Release 2012, 164, 145–155.

25

Migliore, L.; Uboldi, C.; Di Bucchianico, S.; Coppedè, F. Nanomaterials and neurodegeneration. Environ. Mol. Mutagen. 2015, 56, 149–170.

26

Garbayo, E.; de Mendoza, A. E. H.; Blanco-Prieto, M. J. Diagnostic and therapeutic uses of nanomaterials in the brain. Curr. Med. Chem. 2014, 21, 4100–4131.

27

Leszek, J.; Ashraf, G. M.; Tse, W. H.; Zhang, J.; Gasiorowski, K.; Avila-Rodriguez, M. F.; Tarasov, V. V.; Barreto, G. E.; Klochkov, S. G.; Bachurin, S. O. et al. Nanotechnology for Alzheimer disease. Curr. Alzheimer Res. 2017, 14, 1182–1189.

28

Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356.

29

Janssen, O.; Vos, S. J. B.; García-Negredo, G.; Tochel, C.; Gustavsson, A.; Smith, M.; Ly, A.; Nelson, M.; Baldwin, H.; Sudlow, C. et al. Real-world evidence in Alzheimer's disease: The ROADMAP Data Cube. Alzheimer’s Dement. 2020, 16, 461–471.

30

2020 Alzheimer's disease facts and figures. 2020 Alzheimer's disease facts and figures. Alzheimer’s Dement. 2020, 16, 391–460.

31

Koffie, R. M.; Melanie-Luehmann, M.; Hashimoto, T.; Adams, K. W.; Mielke, M. L.; Garcia-Alloza, M.; Micheva, K. D.; Smith, S. J.; Kim, M. L.; Lee, V. M. et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl. Acad. Sci. USA 2009, 106, 4012–4017.

32

Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer's disease. Lancet 2011, 377, 1019–1031.

33

De Strooper, B.; Vassar, R.; Golde, T. The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 99–107.

34

Ray, S.; Britschgi, M.; Herbert, C.; Takeda-Uchimura, Y.; Boxer, A.; Blennow, K.; Friedman, L. F.; Galasko, D. R.; Jutel, M.; Karydas, A. et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat. Med. 2007, 13, 1359–1362.

35

Selkoe, D. J. Alzheimer's disease: Genes, proteins, and therapy. Physiol. Rev. 2001, 81, 741–766.

36

Poirier, J.; Bertrand, P.; Poirier, J.; Kogan, S.; Gauthier, S.; Poirier, J., Gauthier, S., Davignon, J.; Bouthillier, D.; Davignon, J. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 1993, 342, 697–699.

37

Kovacs, D. M.; Fausett, H. J.; Page, K. J.; Kim, T. W.; Moir, R. D.; Merriam, D. E.; Hollister, R. D.; Hallmark, O. G.; Mancini, R.; Felsenstein, K. M. et al. Alzheimer-associated presenilins 1 and 2: Neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat. Med. 1996, 2, 224–229.

38

Roses, A. D. Apolipoprotein e alleles as risk factors in Alzheimer's disease. Annu. Rev. Med. 1996, 47, 387–400.

39

Blacker, D.; Wilcox, M. A.; Laird, N. M.; Rodes, L.; Horvath, S. M.; Go, R. C. P.; Perry, R.; Watson, B. Jr.; Bassett, S. S.; McInnis, M. G. et al. Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat. Genet. 1998, 19, 357–360.

40

Blennow, K.; de Leon, M. J.; Zetterberg, H. Alzheimer's disease. Lancet 2006, 368, 387–403.

41

van Leeuwen, F. W.; de Kleijn, D. P. V.; van den Hurk, H. H.; Neubauer, A.; Sonnemans, M. A. F.; Sluijs, J. A.; Köycü, S.; Ramdjielal, R. D. J.; Salehi, A.; Martens, G. J. M. et al. Frameshift mutants of β amyloid precursor protein and ubiquitin-B in Alzheimer's and down patients. Science 1998, 279, 242–247.

42

Stern, Y. Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol. 2012, 11, 1006–1012.

43

Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018, 14, 450–464.

44

Wilson, C. A.; Doms, R. W.; Lee, V. M. Y. Intracellular APP processing and Aβ production in Alzheimer disease. J. Neuropathol. Exp. Neurol. 1999, 58, 787–794.

45

Salon, M. L.; Morelli, L.; Castaño, E. M.; Soto, E. F.; Pasquini, J. M. Defective ubiquitination of cerebral proteins in Alzheimer's disease. J. Neurosci. Res. 2000, 62, 302–310.

46

Cummings, J. L.; Morstorf, T.; Zhong, K. Alzheimer's disease drug-development pipeline: Few candidates, frequent failures. Alzheimer’s Res. Ther. 2014, 6, 37.

47

Birks, J.; Harvey, R. J. Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst. Rev. 2006, 1, CD001190.

48

Loy, C.; Schneider, L. Galantamine for Alzheimer's disease and mild cognitive impairment. Cochrane Database Syst. Rev. 2006, 1, CD001747.

49

Feldman, H. H.; Ferris, S.; Winblad, B.; Sfikas, N.; Mancione, L.; He, Y. S.; Tekin, S.; Burns, A.; Cummings, J.; del Ser, T. et al. Effect of rivastigmine on delay to diagnosis of Alzheimer's disease from mild cognitive impairment: The inddex study. Lancet Neurol. 2007, 6, 501–512.

50

Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer's disease. Arch. Pharm. Res. 2013, 36, 375–399.

51

Reisberg, B.; Doody, R.; Stöffler, A.; Schmitt, F.; Ferris, S.; Möbius, H. J.; Memantine Study Group. Memantine in moderate-to-severe Alzheimer's disease. New Engl. J. Med. 2003, 348, 1333–1341.

52

Dauer, W.; Przedborski, S. Parkinson's disease: Mechanisms and models. Neuron 2003, 39, 889–909.

53

Dahodwala, N.; Li, P. X.; Jahnke, J.; Ladage, V. P.; Pettit, A. R.; Kandukuri, P. L.; Bao, Y. J.; Zamudio, J.; Jalundhwala, Y. J.; Doshi, J. A. Burden of Parkinson's disease by severity: Health care costs in the U. S. Medicare population. Mov. Disord. 2021, 36, 133–142.

54

Reeve, A.; Simcox, E.; Turnbull, D. Ageing and Parkinson's disease: Why is advancing age the biggest risk factor. Ageing Res. Rev. 2014, 14, 19–30.

55

Sveinbjornsdottir, S. The clinical symptoms of Parkinson's disease. J. Neurochem. 2016, 139, 318–324.

56

Schüpbach, M.; Gargiulo, M.; Welter, M. L.; Mallet, L.; Béhar, C.; Houeto, J. L.; Maltête, D.; Mesnage, V.; Agid, Y. Neurosurgery in Parkinson disease - A distressed mind in a repaired body. Neurology 2006, 66, 1811–1816.

57

Houlden, H.; Singleton, A. B. The genetics and neuropathology of Parkinson's disease. Acta Neuropathol. 2012, 124, 325–338.

58

Hou, X.; Watzlawik, J. O.; Fiesel, F. C.; Springer, W. Autophagy in Parkinson's disease. J. Mol. Biol. 2020, 432, 2651–2672.

59

Lehtonen, Š.; Sonninen, T. M.; Wojciechowski, S.; Goldsteins, G.; Koistinaho, J. Dysfunction of cellular proteostasis in Parkinson's disease. Front. Neurosci. 2019, 13, 457.

60

Angelopoulou, E.; Paudel, Y. N.; Shaikh, M. F.; Piperi, C. Fractalkine (CX3CL1) signaling and neuroinflammation in Parkinson's disease: Potential clinical and therapeutic implications. Pharmacol. Res. 2020, 158, 104930.

61

Chakraborty, A.; Brauer, S.; Diwan, A. A review of possible therapies for Parkinson's disease. J. Clin. Neurosci. 2020, 76, 1–4.

62

Yadav, A. P.; Nicolelis, M. A. L. Electrical stimulation of the dorsal columns of the spinal cord for Parkinson's disease. Mov. Disord. 2017, 32, 820–832.

63

Wenker, S. D.; Pitossi, F. J. Cell therapy for Parkinson's disease is coming of age: Current challenges and future prospects with a focus on immunomodulation. Gene Ther. 2020, 27, 6–14.

64

Bernheimer, H.; Birkmayer, W.; Hornykiewicz, O.; Jellinger, K.; Seitelberger, F. Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. J. Neurol. Sci. 1973, 20, 415–455.

65

Dexter, D. T.; Martin-Bastida, A.; Kabba, C.; Piccini, P.; Sharp, D.; Ward, R.; Newbold, R. A pilot 6 months efficacy and safety study utilising the iron chelator deferiprone in early stage Parkinson's disease. Mov. Disord. 2014, 29, 633.

66

Cipriani, S.; Bakshi, R.; Schwarzschild, M. A. Protection by inosine in a cellular model of Parkinson's disease. Neuroscience 2014, 274, 242–249.

67

Walker, F. O. Huntington's disease. Lancet 2007, 369, 218–228.

68

Pringsheim, T.; Wiltshire, K.; Day, L.; Dykeman, J.; Steeves, T.; Jette, N. The incidence and prevalence of Huntington's disease: A systematic review and meta-analysis. Mov. Disord. 2012, 27, 1083–1091.

69

Roos, R. A. C. Huntington's disease: A clinical review. Orphanet J. Rare Dis. 2010, 5, 40.

70

Baudic, S.; Maison, P.; Dolbeau, G.; Boissé, M. F.; Bartolomeo, P.; Barba, G. D.; Traykov, L.; Bachoud-Lévi, A. C. Cognitive impairment related to apathy in early Huntington's disease. Dement. Geriatr. Cogn. Disord. 2006, 21, 316–321.

71

Rosas, H. D.; Salat, D. H.; Lee, S. Y.; Zaleta, A. K.; Pappu, V.; Fischl, B.; Greve, D.; Hevelone, N.; Hersch, S. M. Cerebral cortex and the clinical expression of Huntington's disease: Complexity and heterogeneity. Brain 2008, 131, 1057–1068.

72

Agus, F.; Crespo, D.; Myers, R. H.; Labadorf, A. The caudate nucleus undergoes dramatic and unique transcriptional changes in human prodromal Huntington's disease brain. BMC Med. Genomics 2019, 12, 137.

73

Coppen, E. M.; van der Grond, J.; Roos, R. A. C. Atrophy of the putamen at time of clinical motor onset in Huntington's disease: A 6-year follow-up study. J. Clin. Mov. Disord. 2018, 5, 2.

74

Gutekunst, C. A.; Li, S. H.; Yi, H.; Mulroy, J. S.; Kuemmerle, S.; Jones, R.; Rye, D.; Ferrante, R. J.; Hersch, S. M.; Li, X. J. Nuclear and neuropil aggregates in Huntington's disease: Relationship to neuropathology. J. Neurosci. 1999, 19, 2522–2534.

75

Brusilow, W. S. A. Is Huntington's a glutamine storage disease. Neuroscientist 2006, 12, 300–304.

76

Bonelli, R. M.; Hofmann, P. A systematic review of the treatment studies in Huntington's disease since 1990. Expert Opin. Pharmacother. 2007, 8, 141–153.

77

Poon, L. H.; Kang, G. A.; Lee, A. J. Role of tetrabenazine for Huntington's disease-associated chorea. Ann. Pharmacother. 2010, 44, 1080–1089.

78

Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease: A randomized controlled trial. Neurology 2006, 66, 366–372.

79

Frank, S.; Ondo, W.; Fahn, S.; Hunter, C.; Oakes, D.; Plumb, S.; Marshall, F.; Shoulson, I.; Eberly, S.; Walker, F. et al. A study of chorea after tetrabenazine withdrawal in patients with Huntington disease. Clin. Neuropharmacol. 2008, 31, 127–133.

80

Dean, M.; Sung, V. W. Review of deutetrabenazine: A novel treatment for chorea associated with Huntington's disease. Drug Des., Dev. Ther. 2018, 12, 313–319.

81

Armstrong, M. J.; Miyasaki, J. M. Evidence-based guideline: Pharmacologic treatment of chorea in Huntington disease report of the guideline development subcommittee of the American academy of neurology. Neurology 2012, 79, 597–603.

82

Gibson, J. S.; Claassen, D. O. State-of-the-art pharmacological approaches to reduce chorea in Huntington's disease. Expert Opin. Pharmacother. 2021, 22, 1015–1024.

83

Rowland, L. P.; Shneider, N. A. Amyotrophic lateral sclerosis. New Engl. J. Med. 2001, 344, 1688–1700.

84

Bruijn, L. I.; Miller, T. M.; Cleveland, D. W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 2004, 27, 723–749.

85

Renton, A. E.; Chiò, A.; Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 2014, 17, 17–23.

86

Gill, C.; Phelan, J. P.; Hatzipetros, T.; Kidd, J. D.; Tassinari, V. R.; Levine, B.; Wang, M. Z.; Moreno, A.; Thompson, K.; Maier, M. et al. SOD1-positive aggregate accumulation in the cns predicts slower disease progression and increased longevity in a mutant SOD1 mouse model of ALS. Sci. Rep. 2019, 9, 6724.

87

Saeed, M.; Yang, Y.; Deng, H. X.; Hung, W. Y.; Siddique, N.; Dellefave, L.; Gellera, C.; Andersen, P. M.; Siddique, T. Age and founder effect of SOD1 A4V mutation causing ALS. Neurology 2009, 72, 1634–1639.

88

Moreira, L. G. A.; Pereira, L. C.; Drummond, P. R.; De Mesquita, J. F. Structural and functional analysis of human SOD1 in amyotrophic lateral sclerosis. PLoS One 2013, 8, e81979.

89

Montibeller, L.; de Belleroche, J. Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are characterised by differential activation of ER stress pathways: Focus on UPR target genes. Cell Stress Chaperon. 2018, 23, 897–912.

90

Carrì, M. T.; Valle, C.; Bozzo, F.; Cozzolino, M. Oxidative stress and and mitochondrial damage: importance in non-SOD1 ALS. Front. Cell. Neurosci. 2015, 9, 41.

91

Michaelson, N.; Facciponte, D.; Bradley, W.; Stommel, E. Cytokine expression levels in ALS: A potential link between inflammation and BMAA-triggered protein misfolding. Cytokine Growth Factor Rev. 2017, 37, 81–88.

92

Maragakis, N. J. What can we learn from the edaravone development program for ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 2017, 18, 98–103.

93

Leigh, P. N.; Meininger, V.; Bensimon, G.; Cudkowicz, M.; Robberecht, W. Minocycline for patients with ALS. Lancet Neurol. 2008, 7, 119–120.

94

Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583.

95

Hardy, J. A.; Higgins, G. A. Alzheimer's disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185.

96

Klafki, H. W.; Abramowski, D.; Swoboda, R.; Paganetti, P. A.; Staufenbiel, M. The carboxyl termini of β-amyloid peptides 1-40 and 1-42 are generated by distinct γ-secretase activities. J. Biol. Chem. 1996, 271, 28655–28659.

97

Galante, D.; Corsaro, A.; Florio, T.; Vella, S.; Pagano, A.; Sbrana, F.; Vassalli, M.; Perico, A.; D'Arrigo, C. Differential toxicity, conformation and morphology of typical initial aggregation states of Aβ1-42 and Aβpy3-42 beta-amyloids. Int. J. Biochem. Cell Biol. 2012, 44, 2085–2093.

98

Kauwe, J. S. K.; Cruchaga, C.; Mayo, K.; Fenoglio, C.; Bertelsen, S.; Nowotny, P.; Galimberti, D.; Scarpini, E.; Morris, J. C.; Fagan, A. M. Variation in MAPT is associated with cerebrospinal fluid tau levels in the presence of amyloid-beta deposition. Proc. Natl. Acad. Sci. USA 2008, 105, 8050–8054.

99

Grundke-Iqbal, I.; Iqbal, K.; Tung, Y. C.; Quinlan, M.; Wisniewski, H. M.; Binder, L. I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986, 83, 4913–4917.

100

Ken, T.; Masato, H.; Yasuo, I.; Takeshi, I. Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. NeuroReport 1997, 8, 2797–2801.

101

Mattsson, N.; Zetterberg, H.; Hansson, O.; Andreasen, N.; Parnetti, L.; Jonsson, M.; Herukka, S. K.; van der Flier, W. M.; Blankenstein, M. A.; Ewers, M. et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009, 302, 385–393.

102

Devos, S. L.; Miller, R. L.; Schoch, K. M.; Holmes, B. B.; Kebodeaux, C. S.; Wegener, A. J.; Chen, G.; Shen, T.; Tran, H.; Nichols, B. et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 2017, 9, eaag0481.

103

Polanco, J. C.; Li, C. Z.; Bodea, L. G.; Martinez-Marmol, R.; Meunier, F. A.; Götz, J. Amyloid-β and tau complexity-towards improved biomarkers and targeted therapies. Nat. Rev. Neurol. 2018, 14, 22–39.

104

Li, X. Y.; Kumar, Y.; Zempel, H.; Mandelkow, E. M.; Biernat, J.; Mandelkow, E. Novel diffusion barrier for axonal retention of tau in neurons and its failure in neurodegeneration. EMBO J. 2011, 30, 4825–4837.

105

Sohn, P. D.; Tracy, T. E.; Son, H. I.; Zhou, Y. G.; Leite, R. E. P.; Miller, B. L.; Seeley, W. W.; Grinberg, L. T.; Gan, L. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol. Neurodegener. 2016, 11, 47.

106

Paris, I.; Lozano, J.; Perez-Pastene, C.; Muñoz, P.; Segura-Aguilar, J. Molecular and neurochemical mechanisms in PD pathogenesis. Neurotox. Res. 2009, 16, 271–279.

107

Krüger, R.; Kuhn, W.; Müller, T.; Woitalla, D.; Graeber, M.; Kösel, S.; Przuntek, H.; Epplen, J. T.; Schöls, L.; Riess, O. AlaSOPro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet. 1998, 18, 106–108.

108

Tanaka, Y.; Engelender, S.; Igarashi, S.; Rao, R. K.; Wanner, T.; Tanzi, R. E.; Sawa, A.; Dawson, V. L.; Dawson, T. M.; Ross, C. A. Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet. 2001, 10, 919–926.

109

Bates, G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 2003, 361, 1642–1644.

110

Lesort, M.; Tucholski, J.; Miller, M. L.; Johnson, G. V. W. Tissue transglutaminase: A possible role in neurodegenerative diseases. Prog. Neurobiol. 2000, 61, 439–463.

111

Azevedo, F. A. C.; Carvalho, L. R. B.; Grinberg, L. T.; Farfel, J. M.; Ferretti, R. E. L.; Leite, R. E. P.; Filho, W. J.; Lent, R.; Herculano-Houzel, S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 2009, 513, 532–541.

112

Nayak, D.; Roth, T. L.; McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 2014, 32, 367–402.

113

Block, M. L.; Zecca, L.; Hong, J. S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007, 8, 57–69.

114

Gertig, U.; Hanisch, U. K. Microglial diversity by responses and responders. Front. Cell. Neurosci. 2014, 8, 101.

115

Singh, A. K.; Mishra, G.; Maurya, A.; Awasthi, R.; Kumari, K. Thakur, A.; Rai, A.; Rai, G. K.; Sharma, B.; Kulkarni, G. T.; Singh, S. K. Role of TREM2 in Alzheimer's disease and its consequences on β-amyloid, tau and neurofibrillary tangles. Curr. Alzheimer Res. 2019, 16, 1216–1229.

116

Theodore, S.; Cao, S. W.; McLean, P. J.; Standaert, D. G. Targeted overexpression of human α-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol. 2008, 67, 1149–1158.

117

Crapser, J. D.; Ochaba, J.; Soni, N.; Reidling, J. C.; Thompson, L. M.; Green, K. N. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington's disease. Brain 2020, 143, 266–288.

118

Nakagawa, Y.; Chiba, K. Role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals 2014, 7, 1028–1048.

119

Jing, H.; Lee, S. NF-κB in cellular senescence and cancer treatment. Mol. Cells 2014, 37, 189–195.

120

Boyce, B. F.; Xiu, Y.; Li, J. B.; Xing, L. P.; Yao, Z. Q. NF-κB-mediated regulation of osteoclastogenesis. Endocrinol. Metab. 2015, 30, 35–44.

121

Candy, J. M.; Klinowski, J.; Perry, R. H.; Perry, E. K.; Fairbairn, A.; Oakley, A. E.; Carpenter, T. A.; Atack, J. R.; Blessed, G.; Edwardson, J. A. Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet 1986, 327, 354–356.

122

Perry, E. K.; Marshall, E.; Perry, R. H.; Irving, D.; Smith, C. J.; Blessed, G.; Fairbairn, A. F. Cholinergic and dopaminergic activities in senile dementia of lewy body type. Alzheimer Dis. Assoc. Disord. 1990, 4, 87–95.

123

Austin, P. J.; Moalem-Taylor, G. The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. J. Neuroimmunol. 2010, 229, 26–50.

124

Heller, S.; Kölsch, U.; Magg, T.; Krüger, R.; Scheuern, A.; Schneider, H.; Eichinger, A.; Wahn, V.; Unterwalder, N.; Lorenz, M. et al. T cell impairment is predictive for a severe clinical course in NEMO deficiency. J. Clin. Immunol. 2020, 40, 421–434.

125

Ansari, M. A.; Scheff, S. W. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J. Neuropathol. Exp. Neurol. 2010, 69, 155–167.

126

Keller, J. N.; Schmitt, F. A.; Scheff, S. W.; Ding, Q.; Chen, Q.; Butterfield, D. A.; Markesbery, W. R. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 2005, 64, 1152–1156.

127

Tapeinos, C.; Pandit, A. Reactive oxygen species: Physical, chemical, and biological structures based on ROS-sensitive moieties that are able to respond to oxidative microenvironments (Adv. Mater. 27/2016). Adv. Mater. 2016, 28, 5334–5334.

128

Agarwal, A.; Hamada, A.; Esteves, S. C. Insight into oxidative stress in varicocele-associated male infertility: Part 1. Nat. Rev. Urol. 2012, 9, 678–690.

129

Uttara, B.; Singh, A. V.; Zamboni, P.; Mahajan, R. T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74.

130

Luque-Contreras, D.; Carvajal, K.; Toral-Rios, D.; Franco-Bocanegra, D.; Campos-Peña, V. Oxidative stress and metabolic syndrome: Cause or consequence of Alzheimer's disease? Oxid. Med. Cell. Longev. 2014, 2014, 497802.

131

Kaniyappan, S.; Chandupatla, R. R.; Mandelkow, E. M.; Mandelkow, E. Extracellular low-n oligomers of tau cause selective synaptotoxicity without affecting cell viability. Alzheimer’s Dement. 2017, 13, 1270–1291.

132

Bigarella, C. L.; Liang, R.; Ghaffari, S. Stem cells and the impact of ROS signaling. Development 2014, 141, 4206–4218.

133

Wu, Y. B.; Chen, M. Q.; Jiang, J. L. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 2019, 49, 35–45.

134

Papa, S.; De Rasmo, D. Complex I deficiencies in neurological disorders. Trends Mol. Med. 2013, 19, 61–69.

135

Cherubini, M.; Lopez-Molina, L.; Gines, S. Mitochondrial fission in Huntington's disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca2+ efflux and Reactive Oxygen Species (ROS) homeostasis. Neurobiol. Dis. 2020, 136, 104741.

136

Sangubotla, R.; Kim, J. Recent trends in analytical approaches for detecting neurotransmitters in Alzheimer’s disease. TrAC Trends Anal. Chem. 2018, 105, 240–250.

137

Hamaue, N.; Ogata, A.; Terado, M.; Tsuchida, S.; Yabe, I.; Sasaki, H.; Hirafuji, M.; Togashi, H.; Aoki, T. Entacapone, a catechol-O-methyltransferase inhibitor, improves the motor activity and dopamine content of basal ganglia in a rat model of Parkinson's disease induced by Japanese encephalitis virus. Brain Res. 2010, 1309, 110–115.

138

Meyer, U.; Feldon, J. Neural basis of psychosis-related behaviour in the infection model of schizophrenia. Behav. Brain Res. 2009, 204, 322–334.

139

Wei, B. B.; Li, Q.; Fan, R. H.; Su, D.; Chen, X. H.; Jia, Y.; Bi, K. S. Determination of monoamine and amino acid neurotransmitters and their metabolites in rat brain samples by UFLC-MS/MS for the study of the sedative-hypnotic effects observed during treatment with S. Chinensis. J. Pharm. Biomed. Anal. 2014, 88, 416–422.

140

Dong, J.; Atwood, C. S.; Anderson, V. E.; Siedlak, S. L.; Smith, M. A.; Perry, G.; Carey, P. R. Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 2003, 42, 2768–2773.

141

Huang, X. D.; Atwood, C. S.; Hartshorn, M. A.; Multhaup, G.; Goldstein, L. E.; Scarpa, R. C.; Cuajungco, M. P.; Gray, D. N.; Lim, J.; Moir, R. D. et al. The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999, 38, 7609–7616.

142

Nunes, T.; Bernardazzi, C.; de Souza, H. S. Cell death and inflammatory bowel diseases: Apoptosis, necrosis, and autophagy in the intestinal epithelium. BioMed Res. Int. 2014, 2014, 218493.

143

Ji, Z. H.; Zhao, H.; Liu, C.; Yu, X. Y. In-vitro neuroprotective effect and mechanism of 2β-hydroxy-δ-cadinol against amyloid β-induced neuronal apoptosis. NeuroReport 2020, 31, 245–250.

144

Schwartzman, R. A.; Cidlowski, J. A. Apoptosis: The biochemistry and molecular biology of programmed cell death. Endocr. Rev. 1993, 14, 133–151.

145

Putcha, G. V.; Deshmukh, M.; Johnson, E. M. Jr. Inhibition of apoptotic signaling cascades causes loss of trophic factor dependence during neuronal maturation. J. Cell Biol. 2000, 149, 1011–1018.

146

Friker, L. L.; Scheiblich, H.; Hochheiser, I. V.; Brinkschulte, R.; Riedel, D.; Latz, E.; Geyer, M.; Heneka, M. T. β-amyloid clustering around ASC fibrils boosts its toxicity in microglia. Cell Rep. 2020, 30, 3743–3754.e6.

147

Plenchette, S.; Romagny, S.; Laurens, V.; Bettaieb, A. S-nitrosylation in TNF superfamily signaling pathway: Implication in cancer. Redox Biol. 2015, 6, 507–515.

148

Bock, F. J.; Tait, S. W. G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2020, 21, 85–100.

149

Larsen, B. D.; Rampalli, S.; Burns, L. E.; Brunette, S.; Dilworth, F. J.; Megeney, L. A. Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc. Natl. Acad. Sci. USA 2010, 107, 4230–4235.

150

Ali, W.; Ikram, M.; Park, H. Y.; Jo, M. G.; Ullah, R.; Ahmad, S.; Abid, N. B.; Kim, M. O. Oral administration of alpha linoleic acid rescues Aβ-induced glia-mediated neuroinflammation and cognitive dysfunction in C57BL/6N mice. Cells 2020, 9, 667.

151

Sathya, S.; Shanmuganathan, B.; Devi, K. P. Deciphering the anti-apoptotic potential of α-bisabolol loaded solid lipid nanoparticles against Aβ induced neurotoxicity in Neuro-2a cells. Colloids Surf. B:Biointerfaces 2020, 190, 110948.

152

Wang, Y. Q.; Zhang, Y.; Zhang, X. M.; Yang, T. T.; Liu, C. G.; Wang, P. C. Alcohol dehydrogenase 1B suppresses β-amyloid-induced neuron apoptosis. Front. Aging Neurosci. 2019, 11, 135.

153

Angelopoulou, E.; Pyrgelis, E. S.; Piperi, C. Neuroprotective potential of chrysin in Parkinson's disease: Molecular mechanisms and clinical implications. Neurochem. Int. 2020, 132, 104612.

154

Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 2011, 147, 728–741.

155

Mizushima, N.; Yoshimori, T.; Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27, 107–132.

156

Jung, C. H.; Ro, S. H.; Cao, J.; Otto, N. M.; Kim, D. H. mTOR regulation of autophagy. FEBS Lett. 2010, 584, 1287–1295.

157

Liang, C. Y.; Feng, P. H.; Ku, B.; Dotan, I.; Canaani, D.; Oh, B. H.; Jung, J. U. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 2006, 8, 688–698.

158

Pankiv, S.; Clausen, T. H.; Lamark, T.; Brech, A.; Bruun, J. A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282, 24131–24145.

159

Kocaturk, N. M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a molecular target for cancer treatment. Eur. J. Pharm. Sci. 2019, 134, 116–137.

160

Kenyon, C. J. The genetics of ageing. Nature 2010, 464, 504–512.

161

Spires-Jones, T. L.; Attems, J.; Thal, D. R. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol. 2017, 134, 187–205.

162

Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 2003, 4, 49–60.

163

Singer, O.; Marr, R. A.; Rockenstein, E.; Crews, L.; Coufal, N. G.; Gage, F. H.; Verma, I. M.; Masliah, E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. 2005, 8, 1343–1349.

164

Shyam, R.; Ren, Y.; Lee, J.; Braunstein, K. E.; Mao, H. Q.; Wong, P. C. Intraventricular delivery of siRNA nanoparticles to the central nervous system. Mol. Ther. -Nucl. Acids 2015, 4, e242.

165

Wang, P. Z.; Zheng, X. Y.; Guo, Q.; Yang, P.; Pang, X. Y.; Qian, K.; Lu, W.; Zhang, Q. Z.; Jiang, X. G. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer's disease. J. Control. Release 2018, 279, 220–233.

166

Wu, L. P.; Ahmadvand, D.; Su, J. N.; Hall, A.; Tan, X. L.; Farhangrazi, Z. S.; Moghimi, S. M. Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat. Commun. 2019, 10, 4635.

167

Xiao, L.; Wei, F.; Zhou, Y. H. Anderson, G. J.; Frazer, D. M.; Lim, Y. C.; Liu, T. Q.; Xiao, Y. Dihydrolipoic acid-gold nanoclusters regulate microglial polarization and have the potential to alter neurogenesis. Nano Lett. 2020, 20, 478–495.

168

Zhao, Y.; Cai, J. Q.; Liu, Z. C.; Li, Y. S.; Zheng, C. X.; Zheng, Y. D.; Chen, Q.; Chen, H. Y.; Ma, F. H.; An, Y. L. et al. Nanocomposites inhibit the formation, mitigate the neurotoxicity, and facilitate the removal of β-amyloid aggregates in Alzheimer’s disease mice. Nano Lett. 2019, 19, 674–683.

169

Karimi-Sales, R.; Ashiri, M.; Hafizi, M.; Kalanaky, S.; Maghsoudi, A. H.; Fakharzadeh, S.; Maghsoudi, N.; Nazaran, M. H. Neuroprotective effect of new nanochelating-based nano complex, ALZc3, against Aβ(1-42)-induced toxicity in rat: A comparison with memantine. Pharm. Res. 2020, 37, 48.

170

Liu, J. Y. Liu, C.; Zhang, J. F.; Zhang, Y. M.; Liu, K. Y.; Song, J. X.; Sreenivasmurthy, S. G.; Wang, Z. Y.; Shi, Y.; Chu, C. C. et al. A self-assembled α-synuclein nanoscavenger for Parkinson's disease. ACS Nano 2020, 14, 1533–1549.

171

Yang, Y. S.; Mao, Z.; Huang, W. J.; Liu, L. H.; Li, J. L.; Li, J. L.; Wu, Q. Z. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets. Sci. Rep. 2016, 6, 35344.

172

Wadghiri, Y. Z.; Sigurdsson, E. M.; Sadowski, M.; Elliott, J. I.; Li, Y. S.; Scholtzova, H.; Tang, C. Y.; Aguinaldo, G.; Pappolla, M.; Duff, K. et al. Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 2003, 50, 293–302.

173

Lammers, T.; Koczera, P.; Fokong, S.; Gremse, F.; Ehling, J.; Vogt, M.; Pich, A.; Storm, G.; van Zandvoort, M.; Kiessling, F. Theranostic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation. Adv. Funct. Mater. 2015, 25, 36–43.

174

dos Santos Tramontin, N.; da Silva, S.; Arruda, R.; Ugioni, K. S.; Canteiro, P. B.; de Bem Silveira, G.; Mendes, C.; Silveira, P. C. L.; Muller, A. P. Gold nanoparticles treatment reverses brain damage in Alzheimer's disease model. Mol. Neurobiol. 2020, 57, 926–936.

175

Xiong, N.; Zhao, Y. J.; Dong, X. Y.; Zheng, J.; Sun, Y. Design of a molecular hybrid of dual peptide inhibitors coupled on AuNPs for enhanced inhibition of amyloid β-protein aggregation and cytotoxicity. Small 2017, 13, 1601666.

176

Choi, J. S.; Choi, H. J.; Jung, D. C.; Lee, J. H.; Cheon, J. Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid β self-assembly. Chem. Commun. 2008, 2197–2199.

177

Ali, T.; Kim, M. J.; Rehman, S. U.; Ahmad, A.; Kim, M. O. Anthocyanin-loaded peg-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimer’s disease. Mol. Neurobiol. 2017, 54, 6490–6506.

178

Zhou, H.; Gong, Y. C.; Liu, Y. N.; Huang, A. L.; Zhu, X. F.; Liu, J. W.; Yuan, G. L.; Zhang, L.; Wei, J. A.; Liu, J. Intelligently thermoresponsive flower-like hollow nano-ruthenium system for sustained release of nerve growth factor to inhibit hyperphosphorylation of tau and neuronal damage for the treatment of Alzheimer's disease. Biomaterials 2020, 237, 119822.

179

Ceccon, A.; Tugarinov, V.; Clore, G. M. TiO2 nanoparticles catalyze oxidation of huntingtin exon 1-derived peptides impeding aggregation: A quantitative NMR study of binding and kinetics. J. Am. Chem. Soc. 2019, 141, 94–97.

180

Cong, W. S.; Bai, R.; Li, Y. F.; Wang, L. M.; Chen, C. Y. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl. Mater. Interfaces 2019, 11, 34725–34735.

181

Ji, D. S.; Wu, X. M.; Li, D. L.; Liu, P.; Zhang, S. T.; Gao, D. B.; Gao, F.; Zhang, M. X.; Xiao, Y. L. Protective effects of chondroitin sulphate nano-selenium on a mouse model of Alzheimer's disease. Int. J. Biol. Macromol. 2020, 154, 233–245.

182

Holmkvist, A. D.; Agorelius, J.; Forni, M.; Nilsson, U. J.; Linsmeier, C. E.; Schouenborg, J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J. Nanobiotechnol. 2020, 18, 27.

183

Xiao, S. H.; Zhou, D. Y.; Luan, P.; Gu, B. B.; Feng, L. B.; Fan, S. N.; Liao, W.; Fang, W. L.; Yang, L. H.; Tao, E. X. et al. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 2016, 106, 98–110.

184

Li, M.; Zhao, A. D.; Dong, K.; Li, W.; Ren, J. S.; Qu, X. G. Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid β-peptide aggregation and can be used for photothermal treatment of Alzheimer's disease. Nano Res. 2015, 8, 3216–3227.

185

Han, Q. S.; Cai, S. F.; Yang, L.; Wang, X. H.; Qi, C.; Yang, R.; Wang, C. Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer's disease. ACS Appl. Mater. Interfaces 2017, 9, 21116–21123.

186

Wang, L. N.; Liu, X. Y.; Fu, J. Q.; Ning, X. Y.; Zhang, M. X.; Jiang, Z. Y.; Cheng, G. S.; Zhu, Y. M.; Zhang, Z. J. Release of methylene blue from graphene oxide-coated electrospun nanofibrous scaffolds to modulate functions of neural progenitor cells. Acta Biomater. 2019, 88, 346–356.

187

Liu, C.; Luo, X. Potential molecular and graphene oxide chelators to dissolve amyloid-β plaques in Alzheimer's disease: A density functional theory study. J. Mater. Chem. B 2021, 9, 2736–2746.

188

Chen, Y. J.; Chen, Z. H.; Sun, Y. X.; Lei, J. T.; Wei, G. H. Mechanistic insights into the inhibition and size effects of graphene oxide nanosheets on the aggregation of an amyloid-β peptide fragment. Nanoscale 2018, 10, 8989–8997.

189

Wang, J.; Zhang, Z. Y.; Zhang, H. X.; Li, C. L.; Chen, M. L.; Liu, L.; Dong, M. D. Enhanced photoresponsive graphene oxide-modified g-C3N4 for disassembly of amyloid β fibrils. ACS Appl. Mater. Interfaces 2019, 11, 96–103.

190

Xiong, S.; Li, Z. J.; Liu, Y.; Wang, Q.; Luo, J. S.; Chen, X. J.; Xie, Z. J.; Zhang, Y.; Zhang, H.; Chen, T. K. Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease. Biomaterials 2020, 260, 120339.

191

Yang, J. N.; Liu, W.; Sun, Y.; Dong, X. Y. LVFFARK-PEG-stabilized black phosphorus nanosheets potently inhibit amyloid-β fibrillogenesis. Langmuir 2020, 36, 1804–1812.

192

Li, Y.; Du, Z.; Liu, X. P.; Ma, M. M.; Yu, D. Q.; Lu, Y.; Ren, J. S.; Qu, X. G. Near-infrared activated black phosphorus as a nontoxic photo-oxidant for Alzheimer's amyloid-β peptide. Small 2019, 15, e1901116.

193

Xie, Z. J.; Fan, T. J.; An, J.; Choi, W.; Duo, Y. H.; Ge, Y. Q.; Zhang, B.; Nie, G. H.; Xie, N.; Zheng, T. T. et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem. Soc. Rev. 2020, 49, 8065–8087.

194

Chen, J. M.; Fan, T. J.; Xie, Z. J.; Zeng, Q. Q.; Xue, P.; Zheng, T. T.; Chen, Y.; Luo, X. L.; Zhang, H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020, 237, 119827.

195

Li, T. Z.; Liu, Y.; Bao, W. L.; Luo, J. S.; Gao, L. F.; Chen, X. J.; Wang, S. P.; Yu, J. T.; Ge, Y. Q.; Zhang, B. et al. Synergistic photothermal and chemical therapy by smart dual-functional graphdiyne nanosheets for treatment of Parkinson's disease. Adv. Ther. 2021, 4, 2100082.

196

Rapoport, L.; Fleischer, N.; Tenne, R. Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 2005, 15, 1782–1788.

197

Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.

198

Qiu, M.; Ren, W. X.; Jeong, T.; Won, M.; Park, G. Y.; Sang, D. K.; Liu, L. P.; Zhang, H.; Kim, J. S. Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 2018, 47, 5588–5601.

199

Qiu, M.; Singh, A.; Wang, D.; Qu, J. L.; Swihart, M.; Zhang, H.; Prasad, P. N. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today 2019, 25, 135–155.

200

Xing, C. Y.; Chen, S. Y.; Qiu, M.; Liang, X.; Liu, Q.; Zou, Q. S.; Li, Z. J.; Xie, Z. J.; Wang, D.; Dong, B. Q. et al. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater. 2018, 7, 1701510.

201

Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y. H.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.

202

Xing, C. Y.; Chen, S. Y.; Liang, X.; Liu, Q.; Qu, M. M.; Zou, Q. S.; Li, J. H.; Tan, H.; Liu, L. P.; Fan, D. Y. et al. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: Toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 2018, 10, 27631–27643.

203

Liu, J.; Jiang, X. T.; Zhang, R. Y.; Zhang, Y.; Wu, L. M.; Lu, W.; Li, J. Q.; Li, Y. C.; Zhang, H. MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019, 29, 1807326.

204

Tao, W.; Kong, N.; Ji, X. Y.; Zhang, Y. P.; Sharma, A.; Ouyang, J.; Qi, B. W.; Wang, J. Q.; Xie, N.; Kang, C. et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891–2912.

205

Mohammad-Beigi, H.; Hosseini, A.; Adeli, M.; Ejtehadi, M. R.; Christiansen, G.; Sahin, C.; Tu, Z. X.; Tavakol, M.; Dilmaghani-Marand, A.; Nabipour, I. et al. Mechanistic understanding of the interactions between nano-objects with different surface properties and α-synuclein. ACS Nano 2019, 13, 3243–3256.

206

Zhang, J. B.; Wang, J. G.; Xu, J.; Lu, Y. Q.; Jiang, J. K.; Wang, L. M.; Shen, H. M.; Xia, D. J. Curcumin targets the TFEB-lysosome pathway for induction of autophagy. Oncotarget 2016, 7, 75659–75671.

207

Zhuang, X. X.; Wang, S. F.; Tan, Y.; Song, J. X.; Zhu, Z.; Wang, Z. Y.; Wu, M. Y.; Cai, C. Z.; Huang, Z. J.; Tan, J. Q. et al. Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson's disease models. Cell Death Dis. 2020, 11, 128.

208

Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an antibiotic. Brit. J. Pharmacol. 2013, 169, 337–352.

209

Bai, D. F.; Jin, G.; Zhang, D. J.; Zhao, L. N.; Wang M. Y.; Zhu Q. W.; Zhu, L.; Sun, Y.; Liu, X.; Chen, X. Y. et al. Natural silibinin modulates amyloid precursor protein processing and amyloid-β protein clearance in APP/PS1 mice. J. Physiol. Sci. 2019, 69, 643–652.

210

Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Nano-soldiers ameliorate silibinin delivery: A review study. Curr. Drug Deliv. 2020, 17, 15–22.

211

Guo, Q.; You, H. H.; Yang, X.; Lin, B. C.; Zhu, Z. H.; Lu, Z. S.; Li, X. X.; Zhao, Y.; Mao, L.; Shen, S. P. et al. Functional single-walled carbon nanotubes 'CAR' for targeting dopamine delivery into the brain of parkinsonian mice. Nanoscale 2017, 9, 10832–10845.

212

Pahuja, R.; Seth, K.; Shukla, A.; Shukla, R. K.; Bhatnagar, P.; Chauhan, L. K. S.; Saxena, P. N.; Arun, J.; Chaudhari, B. P.; Patel, D. K. et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 2015, 9, 4850–4871.

213

Srivastava, A. K.; Choudhury, S. R.; Karmakar, S. Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson's disease therapy. Biomater. Sci. 2020, 8, 1345–1363.

214

Liu, G.; Men, P.; Perry, G.; Smith, M. A. Nanoparticle and iron chelators as a potential novel Alzheimer therapy. Methods Mol. Biol. 2010, 610, 123–144.

215

Liu, G.; Men, P.; Kudo, W.; Perry, G.; Smith, M. A. Nanoparticle-chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease. Neurosci. Lett. 2009, 455, 187–90.

216

Kazdal, F.; Bahadori, F.; Celik, B.; Ertas, A.; Topcu, G. Inhibition of amyloid β aggregation using optimized nano-encapsulated formulations of plant extracts with high metal chelator activities. Curr. Pharm. Biotechnol. 2020, 21, 681–701.

217

Singh, N. A.; Mandal, A. K. A.; Khan, Z. A. Inhibition of Al(III)-induced A β42 fibrillation and reduction of neurotoxicity by epigallocatechin-3-gallate nanoparticles. J. Biomed. Nanotechnol. 2018, 14, 1147–1158.

218

Xue, X.; Wang, L. R.; Sato, Y.; Jiang, Y.; Berg, M.; Yang, D. S.; Nixon, R. A.; Liang, X. J. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer's disease. Nano Lett. 2014, 14, 5110–5117.

219

Ray, B.; Bisht, S.; Maitra, A.; Maitra, A.; Lahiri, D. K. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: Implications for Alzheimer's disease. J. Alzheimer’s Dis. 2011, 23, 61–77.

220

Moorthy, H.; Govindaraju, T. Dendrimer architectonics to treat cancer and neurodegenerative diseases with implications in theranostics and personalized medicine. ACS Appl. Bio Mater. 2021, 4, 1115–1139.

221

Khan, M.; Boumati, S.; Arib, C.; Diallo, A. T.; Djaker, N.; Doan, B. T.; Spadavecchia, J. Doxorubicin (DOX) gadolinium-gold-complex: A new way to tune hybrid nanorods as theranostic agent. Int. J. Nanomed. 2021, 16, 2219–2236.

222

Wang, C. K.; Wang, X. L.; Chan, H. N.; Liu, G. F.; Wang, Z. X.; Li, H. W.; Wong, M. S. Amyloid-β oligomer-targeted gadolinium-based NIR/MR dual-modal theranostic nanoprobe for Alzheimer's disease. Adv. Funct. Mater. 2020, 30, 1909529.

223

Lim, E. K.; Huh, Y. M.; Yang, J.; Lee, K.; Suh, J. S.; Haam, S. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater. 2011, 23, 2436–2442.

224

Boyes, W. K.; van Thriel, C. Neurotoxicology of nanomaterials. Chem. Res. Toxicol. 2020, 33, 1121–1144.

225

Sayour, H.; Kassem, S.; Canfarotta, F.; Czulak, J.; Mohamed, M.; Piletsky, S. Biocompatibility and biodistribution of surface-modified yttrium oxide nanoparticles for potential theranostic applications. Environ. Sci. Pollut. Res. 2020, 27, 19095–19107.

226

Costa, C.; Moreira, J. N.; Amaral, M. H.; Lobo, J. M. S.; Silva, A. C. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J. Control. Release 2019, 295, 187–200.

227

Liu, Y. Q.; Wang, L.; Feng, H. X.; Ren, X. T.; Ji, J. J.; Bai, F.; Fan, H. Y. Microemulsion-assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett. 2019, 19, 2614–2619.

228

De, S.; Patel, A.; Lutkenhaus, J. L. Layer-by-layer assembly of polymers and anisotropic nanomaterials using spray-based approach. J. Mater. Res. 2020, 35, 1163–1172.

229

Mahdavian, A. R.; Ashjari, M.; Makoo, A. B. Preparation of poly (styrene-methyl methacrylate)/SiO2 composite nanoparticles via emulsion polymerization. An investigation into the compatiblization. Eur. Polym. J. 2007, 43, 336–344.

230

Toth, K.; Osuji, C. O.; Yager, K. G.; Doerk, G. S. Electrospray deposition tool: Creating compositionally gradient libraries of nanomaterials. Rev. Sci. Instrum. 2020, 91, 013701.

231

Rehman, F. U.; Bao, J.; Muhammad, P.; He, W.; Hanif, S.; Rauf, M. A. Blood-brain barrier amenable gold nanoparticles biofabrication in aged cell culture medium. Mater. Today Bio 2020, 8, 100072.

232

Li, X. T.; Tang, W.; Xie, H. J.; Liu, S.; Song, X. L.; Xiao, Y.; Wang, X.; Cheng, L.; Chen, G. R. The efficacy of RGD modified liposomes loaded with vinorelbine plus tetrandrine in treating resistant brain glioma. J. Liposome Res. 2019, 29, 21–34.

233

Farr, A. C.; Xiong, M. P. Challenges and opportunities of deferoxamine delivery for treatment of Alzheimer's disease, Parkinson's disease, and intracerebral hemorrhage. Mol. Pharmaceutics 2021, 18, 593–609.

234

Peng, H.; Huang, X. B.; Melle, A.; Karperien, M.; Pich, A. Redox-responsive degradable prodrug nanogels for intracellular drug delivery by crosslinking of amine-functionalized poly(N-vinylpyrrolidone) copolymers. J. Colloid Interf. Sci. 2019, 540, 612–622.

235

Fang, T.; Ye, Z. J.; Chen, X. N.; Wang, Y. C.; Wan, J. Q.; Wang, H. X. Repurposing of camptothecin: An esterase-activatable prodrug delivered by a self-emulsifying formulation that improves efficacy in colorectal cancer. Int. J. Pharm. 2021, 599, 120399.

236

Lambert, D. M. Rationale and applications of lipids as prodrug carriers. Eur. J. Pharm. Sci. 2000, 11, S15–S27.

237

Neumann, H. The immunological microenvironment in the cns: Implications on neuronal cell death and survival. J. Neural Transm. Suppl. 2000, 59, 59–68.

238

Tikka, T.; Fiebich, B. L.; Goldsteins, G.; Keinanen, R.; Koistinaho, J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci. 2001, 21, 2580–2588.

239

Zhao, H. L.; Alam, A.; San, C. Y.; Eguchi, S.; Chen, Q.; Lian, Q. Q.; Ma, D. Q. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res. 2017, 1665, 1–21.

Nano Research
Pages 3299-3322
Cite this article:
Li T, Hou X, Qi Y, et al. Nanomaterials for neurodegenerative diseases: Molecular mechanisms guided design and applications. Nano Research, 2022, 15(4): 3299-3322. https://doi.org/10.1007/s12274-021-3865-2
Topics:

1039

Views

7

Crossref

6

Web of Science

7

Scopus

1

CSCD

Altmetrics

Received: 06 June 2021
Revised: 01 September 2021
Accepted: 04 September 2021
Published: 15 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return