AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review

Engineering DNA quadruplexes in DNA nanostructures for biosensor construction

Jingxin Liu1,§Li Yan1,§Shiliang He1( )Junqing Hu1,2( )
College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
Shenzhen Bey Laboratory, Shenzhen 518132, China

§ Jingxin Liu and Li Yan contributed equally to this work.

Show Author Information

Graphical Abstract

The intriguing interweaving of naturally occurring DNA quadruplexes and artificial DNA nanostructures promotes recent advance in biosensor construction.

Abstract

DNA quadruplexes are nucleic acid conformations comprised of four strands. They are prevalent in human genomes and increasing efforts are being directed toward their engineering. Taking advantage of the programmability of Watson–Crick base-pairing and conjugation methodology of DNA with other molecules, DNA nanostructures of increasing complexity and diversified geometries have been artificially constructed since 1980s. In this review, we investigate the interweaving of natural DNA quadruplexes and artificial DNA nanostructures in the development of the ever-prosperous field of biosensing, highlighting their specific roles in the construction of biosensor, including recognition probe, signal probe, signal amplifier and support platform. Their implementation in various sensing scenes was surveyed. And finally, general conclusion and future perspective are discussed for further developments.

References

1

Watson, J. D.; Crick, F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738.

2

Parkinson, G. N.; Lee, M. P. H.; Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 2002, 417, 876–880.

3

Leroy, J. L.; Guéron, M.; Mergny, J. L.; Hélène, C. Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res. 1994, 22, 1600–1606.

4

Wright, E. P.; Huppert, J. L.; Waller, Z. A. E. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res. 2017, 45, 2951–2959.

5

Chambers, V. S.; Marsico, G.; Boutell, J. M.; Di Antonio, M.; Smith, G. P.; Balasubramanian, S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015, 33, 877–881.

6

Zeraati, M.; Langley, D. B.; Schofield, P.; Moye, A. L.; Rouet, R.; Hughes, W. E.; Bryan, T. M.; Dinger, M. E.; Christ, D. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018, 10, 631–637.

7

Di Antonio, M.; Ponjavic, A.; Radzevičius, A.; Ranasinghe, R. T.; Catalano, M.; Zhang, X. Y.; Shen, J. Z.; Needham, L. M.; Lee, S. F.; Klenerman, D. et al. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat. Chem. 2020, 12, 832–837.

8

Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 1982, 99, 237–247.

9

Chen, J.; Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 1991, 350, 631–633.

10

Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.; Schmidt, C. F.; Turberfield, A. J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 2005, 310, 1661–1665.

11

Iinuma, R.; Ke, Y. G.; Jungmann, R.; Schlichthaerle, T.; Woehrstein, J. B.; Yin, P. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 2014, 344, 65–69.

12

Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

13

Ong, L. L.; Hanikel, N.; Yaghi, O. K.; Grun, C.; Strauss, M. T.; Bron, P.; Lai-Kee-Him, J.; Schueder, F.; Wang, B.; Wang, P. F. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 2017, 552, 72–77.

14

Tikhomirov, G.; Petersen, P.; Qian, L. L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 2017, 552, 67–71.

15

Cutler, J. I.; Auyeung, E.; Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 2012, 134, 1376–1391.

16

Samanta, D.; Ebrahimi, S. B.; Kusmierz, C. D.; Cheng, H. F.; Mirkin, C. A. Protein spherical nucleic acids for live-cell chemical analysis. J. Am. Chem. Soc. 2020, 142, 13350–13355.

17
Neidle, S. Principles of Nucleic Acid Structure; Elsevier Press: London, 2008.
18

Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013, 5, 182–186.

19
Zeraati, M.; Langley, D. B.; Schofield, P.; Moye, A. L.; Rouet, R.; Hughes, W. E.; Bryan, T. M.; Dinger, M. E.; Christ, D. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018, 10, 631–637.https://doi.org/10.1038/s41557-018-0046-3
20

Huang, J.; Ying, L.; Yang, X. H.; Yang, Y. J.; Quan, K.; Wang, H.; Xie, N. L.; Ou, M.; Zhou, Q. F.; Wang, K. M. Ratiometric fluorescent sensing of pH values in living cells by dual-fluorophore-labeled i-motif nanoprobes. Anal. Chem. 2015, 87, 8724–8731.

21

Cui, M. R.; Chen, L. X.; Li, X. L.; Xu J. J.; Chen, H. Y. NIR remote-controlled "lock-unlock" nanosystem for imaging potassium ions in living cells. Anal. Chem. 2020, 92, 4558–4565.

22

He, S. L.; Liu, M. M.; Yin, F. F.; Liu, J. B.; Ge, Z. L.; Li, F.; Li, M.; Shi, J. Y.; Wang, L. H.; Mao, X. H. et al. Programming folding cooperativity of the dimeric i-motif with DNA frameworks for sensing small pH variations. Chem. Commun. 2021, 57, 3247–3250.

23

Zhou, Y. J.; Wan, Y. H.; Nie, C. P.; Zhang, J.; Chen, T. T.; Chu, X. Molecular switching of a self-assembled 3D DNA nanomachine for spatiotemporal pH mapping in living cells. Anal. Chem. 2019, 91, 10366–10370.

24

Du, Y.; Peng, P.; Li, T. DNA logic operations in living cells utilizing lysosome-recognizing framework nucleic acid nanodevices for subcellular imaging. ACS Nano 2019, 13, 5778–5784.

25

Ke, Y. G.; Meyer, T.; Shih, W. M.; Bellot, G. Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator. Nat. Commun. 2016, 7, 10935.

26

Zeng, D. D.; San, L. L.; Qian, F. Y.; Ge, Z. L.; Xu, X. H.; Wang, B.; Li, Q.; He, G. F.; Mi, X. Q. Framework nucleic acid-enabled programming of electrochemical catalytic properties of artificial enzymes. ACS Appl. Mater. Interfaces 2019, 11, 21859–21864.

27

Jing, C.; Chen, H. H.; Cai, R. F.; Tian, Y. P.; Zhou, N. D. An electrochemical aptasensor for ATP based on a configuration-switchable tetrahedral DNA nanostructure. Anal. Methods 2020, 12, 3285–3289.

28

Zheng, J.; Du, Y.; Wang, H. H.; Peng, P.; Shi, L. L.; Li, T. Ultrastable bimolecular G-quadruplexes programmed DNA nanoassemblies for reconfigurable biomimetic DNAzymes. ACS Nano 2019, 13, 11947–11954.

29

Centola, M.; Valero, J.; Famulok, M. Allosteric control of oxidative catalysis by a DNA rotaxane nanostructure. J. Am. Chem. Soc. 2017, 139, 16044–16047.

30

Sun, Y. D.; Shi, L.; Wang, Q. W.; Mi, L.; Li, T. Spherical nucleic acid enzyme (SNAzyme) boosted chemiluminescence miRNA imaging using a smartphone. Anal. Chem. 2019, 91, 3652–3658.

31

Sun, Y. D.; Wang, Q. W.; Mi, L.; Shi, L.; Li, T. Target-induced payload amplification for spherical nucleic acid enzyme (SNAzyme)-catalyzed electrochemiluminescence detection of circulating microRNAs. Anal. Chem. 2019, 91, 12948–12953.

32

Shi, L.; Sun, Y. S.; Mi, L.; Li, T. Target-catalyzed self-growing spherical nucleic acid enzyme (SNAzyme) as a double amplifier for ultrasensitive chemiluminescence microRNA detection. ACS Sens. 2019, 4, 3219–3226.

33

Mergny, J. L.; Sen, D. DNA quadruple helices in nanotechnology. Chem. Rev. 2019, 119, 6290–6325.

34

Guéron, M.; Leroy, J. L. The i-motif in nucleic acids. Curr. Opin. Struct. Biol. 2000, 10, 326–331.

35

Karsisiotis, A. I.; O’Kane, C.; da Silva, M. W. DNA quadruplex folding formalism - a tutorial on quadruplex topologies. Methods 2013, 64, 28–35.

36

Nesterova, I. V.; Nesterov, E. E. Rational design of highly responsive pH sensors based on DNA i-motif. J. Am. Chem. Soc. 2014, 136, 8843–8846.

37

Gurung, S. P.; Schwarz, C.; Hall, J. P.; Cardin, C. J.; Brazier, J. A. The importance of loop length on the stability of i-motif structures. Chem. Commun. 2015, 51, 5630–5632.

38

Reilly, S. M.; Morgan, R. K.; Brooks, T. A.; Wadkins, R. M. Effect of interior loop length on the thermal stability and pKa of i-motif DNA. Biochemistry 2015, 54, 1364–1370.

39

Liu, J. X.; Li, W. W.; Li, R. S.; Yin, X. Z.; He, S. L.; Hu, J. Q.; Ruan, S. C. Programmable DNA framework sensors for in situ cell-surface pH analysis. Anal. Chem. 2021, 93, 12170–12174.

40

Brazier, J. A.; Shah, A.; Brown, G. D. I-Motif formation in gene promoters: Unusually stable formation in sequences complementary to known G-quadruplexes. Chem. Commun. 2012, 48, 10739–10741.

41

Nguyen, T.; Fraire, C.; Sheardy, R. D. Linking pH, temperature, and K+ concentration for DNA i-motif formation. J. Phys. Chem. B 2017, 121, 7872–7877.

42

Mergny, J. L.; Lacroix, L.; Han, X. G.; Leroy, J. L.; Helene, C. Intramolecular folding of pyrimidine oligodeoxynucleotides into an i-DNA motif. J. Am. Chem. Soc. 1995, 117, 8887–8898.

43

Largy, E.; Marchand, A.; Amrane, S.; Gabelica V.; Mergny J. L. Quadruplex turncoats: Cation-dependent folding and stability of quadruplex-DNA double switches. J. Am. Chem. Soc. 2016, 138, 2780–2792.

44

Day, H. A.; Huguin, C.; Waller, Z. A. E. Silver cations fold i-motif at neutral pH. Chem. Commun. 2013, 49, 7696–7698.

45

Swasey, S. M. Rosu, F.; Copp, S. M.; Gabelica, V.; Gwinn, E. G. Parallel guanine duplex and cytosine duplex DNA with uninterrupted spines of AgI-mediated Base Pairs. J. Phys. Chem. Lett. 2018, 9, 6605–6610.

46

Cui, J. J.; Waltman, P.; Le, V. H.; Lewis, E. A. The effect of molecular crowding on the stability of human c-MYC promoter sequence i-motif at neutral pH. Molecules 2013, 18, 12751–12767.

47

Bhavsar-Jog, Y. P.; Van Dornshuld, E.; Brooks, T. A.; Tschumper, G. S.; Wadkins, R. M. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry. 2014, 53, 1586–1594.

48

Zhou, J.; Tateishi-karimata, H.; Mergny, J. L.; Cheng, M. P.; Feng Z. C.; Miyoshi D.; Sugimoto N.; Li C. Reevaluation of the stability of G-quadruplex structures under crowding conditions. Biochimie 2016, 121, 204–208.

49

Cheng, E. J.; Xing, Y. Z.; Chen, P.; Yang, Y.; Sun, Y. W.; Zhou, D. J.; Xu, L. J.; Fan, Q. H.; Liu, D. S. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem., Int. Ed. 2009, 48, 7660–7663.

50

Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Komiyama, M. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy. Nat. Commun. 2011, 2, 449.

51

Peng, P.; Du, Y.; Zheng, J.; Wang, H. H.; Li, T. Reconfigurable bioinspired framework nucleic acid nanoplatform dynamically manipulated in living cells for subcellular imaging. Angew. Chem., Int. Ed. 2019, 58, 1648–1653.

52

Shi, L. L.; Peng, P.; Du, Y.; Li, T. Programmable i-motif DNA folding topology for a pH-switched reversible molecular sensing device. Nucleic Acids Res. 2017, 45, 4306–4314.

53

Wang, J. B.; Yue, L.; Wang, S.; Willner, I. Triggered reversible reconfiguration of G-quadruplex-bridged "domino"-type origami dimers: Application of the systems for programmed catalysis. ACS Nano 2018, 12, 12324–12336.

54

Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5, 8783–8789.

55

Seferos, D. S.; Prigodich, A. E.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett. 2009, 9, 308–311.

56

Walsh, A. S.; Yin, H. F.; Erben, C. M.; Wood, M. J. A.; Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 2011, 5, 5427–5432.

57

Choi C. H. J.; Hao, L. L.; Narayan, S. P.; Auyeung, E. Mirkin, C. A. Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc. Natl. Acad. Sci. USA 2013, 110, 7625–7630.

58

Ge, Z. L.; Gu, H. Z.; Li, Q.; Fan, C. H. Concept and development of framework nucleic acids. J. Am. Chem. Soc. 2018, 140, 17808–17819.

59

Zhang, P.; Liu, X. G.; Liu, P.; Wang, F.; Ariyama, H.; Ando, T.; Lin, J. P.; Wang, L. H.; Hu, J.; Li, B. et al. Capturing transient antibody conformations with DNA origami epitopes. Nat. Commun. 2020, 11, 3114.

60

Yao, G. B.; Zhang, F.; Wang, F.; Peng, T. H.; Liu, H.; Poppleton, E.; Šulc, P.; Jiang, S. X.; Liu, L.; Gong, C. et al. Meta-DNA structures. Nat. Chem. 2020, 12, 1067–1075.

61

Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L. Dysregulated pH: A perfect storm for cancer progression. Nat. Publ. Cancer 2011, 11, 671–677.

62

Cheng, Y.; Cheng, M. P.; Hao, J. Y.; Miao, W. H.; Zhou, W. Q.; Jia, G. Q.; Li, C. Highly selective detection of K+ based on a dimerized G-quadruplex DNAzyme. Anal. Chem. 2021, 93, 6907–6912.

63

Leung, K.; Chakraborty, K.; Saminathan, A.; Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotech. 2019, 14, 176–183.

64

Zeng, S.; Liu, D.; Li, C. Y.; Yu, F.; Fan, L.; Lei, C. Y.; Huang, Y.; Nie, Z.; Yao, S. Z. Cell-surface-anchored ratiometric DNA tweezer for real-time monitoring of extracellular and apoplastic pH. Anal. Chem. 2018, 90, 13459–13466.

65

Peng, P.; Wang, Q. W.; Du, Y.; Wang, H. H.; Shi, L. L.; Li, T. Extracellular ion-responsive logic sensors utilizing DNA dimeric nanoassemblies on cell surface and application to boosting AS1411 internalization. Anal. Chem. 2020, 92, 9273–9280.

66

Lu, J.; Wang, J.; Hu, X. L.; Gyimah, E.; Yakubu, S.; Wang, K.; Wu, X. Y.; Zhang, Z. Electrochemical biosensor based on tetrahedral DNA nanostructures and G-quadruplex-hemin conformation for the ultrasensitive detection of MicroRNA-21 in serum. Anal. Chem. 2019, 91, 7353–7359.

67

Zhang, Y. F.; Li, B. X.; Jin, Y. Label-free fluorescent detection of thrombin using G-quadruplex-based DNAzyme as sensing platform. Analyst 2011, 136, 3268–3273.

68

Kong, L. Q.; Wang, D.; Chai, Y. Q.; Yuan, Y. L.; Yuan, R. Electrocatalytic efficiency regulation between target-induced HRP-mimicking DNAzyme and GOx with low background for ultrasensitive detection of thrombin. Anal. Chem. 2019, 91, 10289–10294.

69

Erben, C. M.; Goodman, R. P.; Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem., Int. Ed. 2006, 45, 7414–7417.

70

Mao, X. H.; Simon, A. J.; Pei, H.; Shi, J. Y.; Li, J.; Huang, Q.; Plaxco, K. W.; Fan, C. H. Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. Chem. Sci. 2016, 7, 1200–1204.

71

Dembska, A.; Bielecka, P.; Juskowiak, B. pH-Sensing fluorescence oligonucleotide probes based on an i-motif scaffold: A review. Anal. Methods 2017, 9, 6092–6106.

72

Benabou, S.; Aviñó, A.; Eritja, R.; González, C.; Gargallo, R. Fundamental aspects of the nucleic acid i-motif structures. RSC Adv. 2014, 4, 26956–26980.

73

Fedoroff, O. Y.; Rangan, A.; Chemeris, V. V.; Hurley, L. H. Cationic porphyrins promote the formation of i-motif DNA and bind peripherally by a nonintercalative mechanism. Biochemistry 2000, 39, 15083–15090.

74

Xue, L.; Ranjan, N.; Arya, D. P. Synthesis and spectroscopic studies of the aminoglycoside (neomycin)-perylene conjugate binding to human telomeric DNA. Biochemistry 2011, 50, 2838–2849.

75

Xu, L. J.; Shen, X. Q.; Hong, S. N.; Wang, J. N.; Zhou, L.; Chen, X.; Pei, R. J. Thiazole orange as a fluorescent light-up probe for the i-motif and its application to the development of a molecular logic system. Asian J. Org. Chem. 2015, 4, 1375–1378.

76

Lee, I. J.; Patil, S. P.; Fhayli, K.; Alsaiari, S.; Khashab, N. M. Probing structural changes of self assembled i-motif DNA. Chem. Commun. 2015, 51, 3747–3749.

77

Shi, Y. H.; Sun, H. X.; Xiang, J. F.; Yu, L. J.; Yang, Q. F.; Li, Q.; Guan, A. J.; Tang, Y. L. i-Motif-modulated fluorescence detection of silver(I) with an ultrahigh specificity. Anal. Chim. Acta 2015, 857, 79–84.

78

Martino, L.; Pagano, B.; Fotticchia, I.; Neidle, S.; Giancola, C. Shedding light on the interaction between TMPyP4 and human telomeric quadruplexes. J. Phys. Chem. B 2009, 113, 14779–14786.

79

Monchaud, D.; Allain, C.; Teulade-Fichou, M. P. Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg. Med. Chem. Lett. 2006, 16, 4842–4845.

80

Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P. I.; Bhasikuttan, A. C. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 2013, 135, 367–376.

81

Gai, W.; Yang, Q. F.; Xiang, J. F.; Jiang, W.; Li, Q.; Sun, H. X.; Guan, A. J.; Shang, Q.; Zhang, H.; Tang, Y. L. A dual-site simultaneous binding mode in the interaction between parallel-stranded G-quadruplex [d(TGGGGT)] 4 and cyanine dye 2, 2′-diethyl-9-methyl-selenacarbocyanine bromide. Nucleic Acids Res. 2013, 41, 2709–2722.

82

Ma, D. L.; Kwan, M. H. T.; Chan, D. S. H.; Lee, P.; Yang, H.; Ma, V. P. Y.; Bai, L. P.; Jiang, Z. H.; Leung, C. H. Crystal violet as a fluorescent switch-on probe for i-motif: Label-free DNA-based logic gate. Analyst 2011, 136, 2692–2696.

83

Xu, L. J.; Hong, S. N.; Sun, N.; Wang, K. W.; Zhou, L.; Ji, L. Y.; Pei, R. J. Berberine as a novel light-up i-motif fluorescence ligand and its application in designing molecular logic systems. Chem. Commun. 2016, 52, 179–182.

84

Xu, L. J.; Wang, J. N.; Sun, N.; Liu, M.; Cao, Y.; Wang, Z. L.; Pei, R. J. Neutral red as a specific light-up fluorescent probe for i-motif DNA. Chem. Commun. 2016, 52, 14330–14333.

85

Jiang, G. M.; Xu, L. J.; Wang, K. W.; Chen, X.; Wang, J. N.; Cao, W. G.; Pei, R. J. Quinaldine red as a fluorescent light-up probe for i-motif structures. Anal. Methods 2017, 9, 1585–1588.

86

Niazov, T.; Pavlov, V.; Xiao, Y.; Gill, R.; Willner, I. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett. 2004, 4, 1683–1687.

87

Grabow, W. W.; Jaeger, L. RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 2014, 47, 1871–1880.

88
Zhou, J. J.; Han, H. Y.; Liu, J. W. Nucleobase, nucleoside, nucleotide, and oligonucleotide coordinated metal ions for sensing and biomedicine applications. Nano Res., 2021, 15, 71−84.https://doi.org/10.1007/s12274-021-3483-z
89

Liu, J. B.; Wang, Z. G.; Zhao, S.; Ding, B. Q. Multifunctional nucleic acid nanostructures for gene therapies. Nano Res. 2018, 11, 5017–5027.

90

Hu, Y. W.; Cecconello, A.; Idili, A.; Ricci, F.; Willner, I. Triplex DNA nanostructures: From basic properties to applications. Angew. Chem., Int. Ed. 2017, 56, 15210–15233.

91

Zheng, J.; Yang, R. H.; Shi, M. L.; Wu, C. C.; Fang, X. H.; Li, Y. H.; Li, J. S.; Tan, W. H. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem. Soc. Rev. 2015, 44, 3036–3055.

92

Monferrer, A.; Zhang, D.; Lushnikov, A. J.; Hermann T. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules. Nat. Commun. 2019, 10, 608.

93

Yesselman, J. D.; Eiler, D.; Carlson, E. D.; Gotrik, M. R.; d’Aquino, A. E.; Ooms, A. N.; Kladwang, W.; Carlson, P. D.; Shi, X. S.; Costantino, D. A. et al. Computational design of three-dimensional RNA structure and function. Nat. Nanotechnol. 2019, 14, 866–873.

94

Yatsunyk, L. A.; Piétrement, O.; Albrecht, D.; Tran, P. L. T.; Renčiuk, D.; Sugiyama, H.; Arbona, J. M.; Aimé, J. P.; Mergny, J. L. Guided assembly of tetramolecular G-quadruplexes. ACS Nano 2013, 7, 5701–5710.

95

Munzar, J. D.; Ng, A.; Juncker, D. Duplexed aptamers: History, design, theory, and application to biosensing. Chem. Soc. Rev. 2019, 48, 1390–1419.

96

Harroun, S. G.; Prévost-Tremblay, C.; Lauzon, D.; Desrosiers, A.; Wang, X. M.; Pedro, L.; Vallée-Bélisle, A. Programmable DNA switches and their applications. Nanoscale 2018, 10, 4607–4641.

97

Nesterova, I. V.; Briscoe, J. R.; Nesterov, E. E. Rational control of folding cooperativity in DNA quadruplexes. J. Am. Chem. Soc. 2015, 137, 11234–11237.

98

Fadel, T. R.; Farrell, D. F.; Friedersdorf, L. E.; Griep, M. H.; Hoover, M. D.; Meador, M. A.; Meyyappan, M. Toward the responsible development and commercialization of sensor nanotechnologies. ACS Sens. 2016, 1, 207–216.

Nano Research
Pages 3504-3513
Cite this article:
Liu J, Yan L, He S, et al. Engineering DNA quadruplexes in DNA nanostructures for biosensor construction. Nano Research, 2022, 15(4): 3504-3513. https://doi.org/10.1007/s12274-021-3869-y
Topics:

931

Views

14

Crossref

13

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 16 July 2021
Revised: 28 August 2021
Accepted: 04 September 2021
Published: 04 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return