Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Au atoms doped in Ti3C2Tx MXene: Benefiting recovery of oxygen vacancies towards photocatalytic aerobic oxidation

Kaifu Yu1,2Sanmei Wang2Qi Li2Tingting Hou2Yue Xin2Rong He1Wenhua Zhang3()Shuquan Liang2Liangbing Wang2()Wenkun Zhu1()
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha 410083, China
Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Centre of Quantum Information & Quantum Physics, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

View original image Download original image
The doped Au atoms in Ti3C2Tx MXene (Au/Ti3C2Tx) facilitated the recovery of oxygen vacancies (OVs) during aerobic oxidation. The recovered oxygen vacancies continuously and efficiently activated O2, contributing to the remarkable catalytic activity and stability.

Abstract

Photocatalytic aerobic oxidation by using oxygen molecules (O2) as green and low-cost oxidants is of great attraction, where the introduction of irradiation has been proved as an efficient strategy to lower reaction temperature as well as promote catalytic performance. Moreover, the oxygen vacancies (OVs) of catalyst are highly active sites to adsorb and activate O2 during photocatalytic aerobic oxidation. However, OVs are easily blocked by oxygen atoms from active oxygen species during the catalytic process, leading to the deactivation of catalysis. Herein, a promising catalyst toward photocatalytic aerobic oxidation was successfully developed by recovering the OVs through doping Au atoms into Ti3C2Tx MXene (Au/Ti3C2Tx). Impressively, Au/Ti3C2Tx exhibited remarkable activity under full-spectrum irradiation towards photooxidation of methyl phenyl sulfide (MPS) and methylene blue (MB), attaining a conversion of >90% at room temperature. Moreover, Au/Ti 3C2Tx also manifested remarkable stability by maintaining >95% initial activity after 10 successive reaction rounds. Further mechanistic studies indicated that the OVs of Au/Ti 3C2Tx served as the active centers to efficiently adsorb and activate O2. More importantly, the doped Au atoms of Au/Ti3C2Tx were conducive to the recovery of OVs during photocatalytic process from the results of theoretical and experimental aspects. The recovered OVs of Au/Ti3C2Tx continuously and efficiently activated O2, directly contributing to the remarkable catalytic activity and stability.

Electronic Supplementary Material

Download File(s)
12274_2021_3878_MOESM1_ESM.pdf (718.1 KB)

References

1

Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

2

Yoon, T. P.; Ischay, M. A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532.

3

Sun, X. S.; Zhang, X. D.; Xie, Y. Surface defects in two-dimensional photocatalysts for efficient organic synthesis. Matter 2020, 2, 842–861.

4

Sun, X. S.; Luo, X.; Zhang, X. D.; Xie, J. F.; Jin, S.; Wang, H.; Zheng, X. S.; Wu, X. J.; Xie, Y. Enhanced superoxide generation on defective surfaces for selective photooxidation. J. Am. Chem. Soc. 2019, 141, 3797–3801.

5

Li, Z. J.; Li, S. Y.; Davis, A. H.; Hofman, E.; Leem, G.; Zheng, W. W. Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols. Nano Res. 2020, 13, 1668–1676.

6

He, C. H.; Yu, L. L.; Lu, N.; Wang, W. J.; Chen, W.; Lu, S. J.; Yang, Y.; Ma, D. K.; Huang, S. M. Screwdriver-like Pd-Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene. Nano Res. 2020, 13, 646–652.

7

Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.

8

Wang, H.; Yong, D. Y.; Chen, S. C.; Jiang, S. L.; Zhang, X. D.; Shao, W.; Zhang, Q.; Yan, W. S.; Pan, B. C.; Xie, Y. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activatio. J. Am. Chem. Soc. 2018, 140, 1760–1766.

9

Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513–3521.

10

Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.

11

Kong, P.; Tan, H.; Lei, T. Y.; Wang, J.; Yan, W. J.; Wang, R. Y.; Waclawik, E. R.; Zheng, Z. F.; Li, Z. Oxygen vacancies confined in conjugated polyimide for promoted visible-light photocatalytic oxidative coupling of amines. Appl. Catal. B: Environ. 2020, 272, 118964.

12

Jing, K. Q.; Ma, W.; Ren, Y. H.; Xiong, J. H.; Guo, B. B.; Song, Y. J.; Liang, S. J.; Wu, L. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol. Appl. Catal. B: Environ. 2019, 243, 10–18.

13

Zhao, K.; Zhang, L. Z.; Wang, J. J.; Li, Q. X.; He, W. W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2013, 135, 15750–15753.

14

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

15

Huang, Y.; Liu, Y.; Wang, W.; Chen, M. J.; Li, H. W.; Lee, S. C.; Ho, W. K.; Huang, T. T.; Cao, J. J. Oxygen vacancy-engineered δ-MnOx/activated carbon for room-temperature catalytic oxidation of formaldehyde. Appl. Catal. B: Environ. 2020, 278, 119294.

16

Hou, T. T.; Xiao, Y.; Cui, P. X.; Huang, Y. N.; Tan, X. P.; Zheng, X. S.; Zou, Y.; Liu, C. X.; Zhu, W. K.; Liang, S. Q. et al. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation. Adv. Energy Mater. 2019, 9, 1902319.

17

Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem., Int. Ed. 2018, 57, 122–138.

18

Hou, T. T.; Guo, R. H.; Chen, L. L.; Xie, Y. C. Z.; Guo, J. S.; Zhang, W. H.; Zheng, X. S.; Zhu, W. K.; Tan, X. P.; Wang, L. B. Atomic-level insights in tuning defective structures for nitrogen photofixation over amorphous SmOCl nanosheets. Nano Energy 2019, 65, 104003.

19

Yang, C.; Tan, Q. Y.; Li, Q.; Zhou, J.; Fan, J. J.; Li, B.; Sun, J.; Lv, K. L. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea. Appl. Catal. B: Environ. 2020, 268, 118738.

20

Peng, J. H.; Chen, X. Z.; Ong, W. J.; Zhao, X. J.; Li, N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem 2019, 5, 18–50.

21

Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 1602725.

22

Xiao, R.; Zhao, C. X.; Zou, Z. Y.; Chen, Z. P.; Tian, L.; Xu, H. T.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118382.

23

Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

24

Hou, T. T.; Li, Q.; Zhang, Y. D.; Zhu, W. K.; Yu, K. F.; Wang, S. M.; Xu, Q.; Liang, S. Q.; Wang, L. B. Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Appl. Catal. B: Environ. 2020, 273, 119072.

25

Ronchi, R. M.; Arantes, J. T.; Santos, S. F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram. Int. 2019, 45, 18167–18188.

26

Fu, X. C.; Chang, H.; Shang, Z. C.; Liu, P. L.; Liu, J. K.; Luo, H. A. Three-dimensional Cu2O nanorods modified by hydrogen treated Ti3C2Tx MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. Chem. Eng. J. 2020, 381, 122001.

27

Tang, S. B.; Liu, T. Y.; Dang, Q.; Zhou, X. H.; Li, X. K.; Yang, T. T.; Luo, Y.; Sharman, E.; Jiang, J. Synergistic effect of surface-terminated oxygen vacancy and single-atom catalysts on defective MXenes for efficient nitrogen fixation. J. Phys. Chem. Lett. 2020, 11, 5051–5058.

28

Zhang, X.; Zhang, Z. H.; Li, J. L.; Zhao, X. D.; Wu, D. H.; Zhou, Z. Ti2CO2 MXene: A highly active and selective photocatalyst for CO2 reduction. J. Mater. Chem. A 2017, 5, 12899–12903.

29

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

30

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

31

Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102.

32

Feng, A. H.; Yu, Y.; Wang, Y.; Jiang, F.; Yu, Y.; Mi, L.; Song, L. X. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Design 2017, 114, 161–166.

33

Huang, H. S.; Song, Y.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Appl. Catal. B: Environ. 2019, 251, 154–161.

34

Hou, T. T.; Luo, Q. Q.; Li, Q.; Zu, H. L.; Cui, P. X.; Chen, S. W.; Lin, Y.; Chen, J. J.; Zheng, X. S.; Zhu, W. K. et al. Modulating oxygen coverage of Ti3C2Tx MXenes to boost catalytic activity for HCOOH dehydrogenation. Nat. Commun. 2020, 11, 4251.

35

Yang, Y. L.; Li, F.; Chen, J.; Fan, J. J.; Xiang, Q. J. Single Au atoms anchored on amino-group-enriched graphitic carbon nitride for photocatalytic CO2 reduction. ChemSusChem 2020, 13, 1979–1985.

36

Sylvestre, J. P.; Poulin, S.; Kabashin, A. V.; Sacher, E.; Meunier, M.; Luong, J. H. T. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B 2004, 108, 16864–16869.

37

Yu, K. F.; Jiang, P. Y.; Yuan, H. B.; He, R.; Zhu, W. K.; Wang, L. B. Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability. Appl. Catal. B: Environ. 2021, 288, 119978.

38

Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428.

39

Huang, Y. M.; Yu, Y.; Yu, Y. F.; Zhang, B. Oxygen vacancy engineering in photocatalysis. Sol. RRL 2020, 4, 2000037.

40

Lei J.; Liu, H. H.; Yuan, C. P.; Chen, Q.; Liu, J. A.; Wen, F. C.; Jiang, X. Y.; Deng, W. J.; Cui, X. D.; Duan, T. et al. Enhanced photoreduction of U(VI) on WO3 nanosheets by oxygen defect engineering. Chem. Eng. J. 2021, 416, 129164.

41

Limbu, T. B.; Chitara, B.; Orlando, J. D.; Cervantes, M. Y. G.; Kumari, S.; Li, Q.; Tang, Y. A.; Yan, F. Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity. J. Mater. Chem. C 2020, 8, 4722–4731.

42

Yoon, Y.; Le, T. A.; Tiwari, A. P.; Kim, I.; Barsoum, M. W.; Lee, H. Low temperature solution synthesis of reduced two dimensional Ti3C2 MXenes with paramagnetic behaviour. Nanoscale 2018, 10, 22429–22438.

43

Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

44

Xu, Y. L.; Shi, X. F.; Hua, R.; Zhang, R.; Yao, Y. J.; Zhao, B.; Liu, T.; Zheng, J. Z.; Lu, G. Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Appl. Catal. B: Environ. 2020, 260, 118142.

45

Mashtalir, O.; Cook, K. M.; Mochalin, V. N.; Crowe, M.; Barsoum, M. W.; Gogotsi, Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2014, 2, 14334–14338.

46

Wang, B.; Wang, M. Y.; Liu, F. Y.; Zhang, Q.; Yao, S.; Liu, X. L.; Huang, F. Ti3C2: An ideal co-catalyst? Angew. Chem., Int. Ed. 2020, 59, 1914–1918.

47

Pei, Y. Y.; Zhang, X. L.; Hui, Z. Y.; Zhou, J. Y.; Huang, X.; Sun, G. Z.; Huang, W. Ti3C2Tx MXene for sensing applications: Recent progress, design principles, and future perspectives. ACS Nano 2021, 15, 3996–4017.

48

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

49

Zheng, T. T.; Sang, W.; He, Z. H.; Wei, Q. S.; Chen, B. W.; Li, H. L.; Cao, C.; Huang, R. J.; Yan, X. P.; Pan, B. C. et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Lett. 2017, 17, 7968–7973.

50

Li, B. L.; Song, H. Y.; Han, F. Q.; Wei, L. S. Photocatalytic oxidative desulfurization and denitrogenation for fuels in ambient air over Ti3C2/g-C3N4 composites under visible light irradiation. Appl. Catal. B: Environ. 2020, 269, 118845.

51

Qin, J. Z.; Hu, X.; Li, X. Y.; Yin, Z. F.; Liu, B. J.; Lam, K. H. 0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2. Nano Energy 2019, 61, 27–35.

52

Cao, Y.; Fang, Y.; Lei, X. Y.; Tan B. H.; Hu, X.; Liu, B. J.; Chen, Q. L. Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. J. Hazard. Mater. 2020, 387, 122021.

53

Chen, X.; Li, J.; Pan, G. C.; Xu, W.; Zhu, J. Y.; Zhou, D. L.; Li, D. Y.; Chen, C.; Lu, G. Y.; Song, H. W. Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sensor. Actuat. B: Chem. 2019, 289, 131–137.

54

Ma, Z. N.; Hu, Z. P.; Zhao, X. D.; Tang, Q.; Wu, D. H.; Zhou, Z.; Zhang, L. X. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 2014, 118, 5593–5599.

55

Zhang, H. T.; Xin, X. J.; Liu, H.; Huang, H. C.; Chen, N. J.; Xie, Y. T.; Deng, W. L.; Guo, C. S.; Yang, W. Q. Enhancing lithium adsorption and diffusion toward extraordinary lithium storage capability of freestanding Ti3C2Tx MXene. J. Phys. Chem. C 2019, 123, 2792–2800.

56

Zhang, Y. J.; Xia, W. Y.; Wu, Y. B.; Zhang, P. H. Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale 2019, 11, 3993–4000.

57

El-Demellawi, J. K.; Lopatin, S.; Yin, J.; Mohammed, O. F.; Alshareef, H. N. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano 2018, 12, 8485–8493.

58

Xu, D. X.; Li, Z. D.; Li, L. S.; Wang, J. Insights into the photothermal conversion of 2D MXene nanomaterials: Synthesis, mechanism, and applications. Adv. Funct. Mater. 2020, 30, 2000712.

59

Velusamy, D. B.; El-Demellawi, J. K.; El-Zohry, A. M.; Giugni, A.; Lopatin, S.; Hedhili, M. N.; Mansour, A. E.; Di Fabrizio, E.; Mohammed, O. F.; Alshareef, H. N. MXenes for plasmonic photodetection. Adv. Mater. 2019, 31, 1807658.

60

Chaudhuri, K.; Alhabeb, M.; Wang, Z. X.; Shalaev, V. M.; Gogotsi, Y.; Boltasseva, A. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics 2018, 5, 1115–1122.

61

Cao, Y. H.; Guo, L.; Dan, M.; Doronkin, D. E.; Han, C. Q.; Rao, Z. Q.; Liu, Y.; Meng, J.; Huang, Z. A.; Zheng, K. B. et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nat. Commun. 2021, 12, 1675.

62

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

63

Gao, Y. J.; Cao, Y. Y.; Gu, Y. B.; Zhuo, H.; Zhuang, G. L.; Deng, S. W.; Zhong, X.; Wei, Z. Z.; Chen, J. H.; Pan, X. et al. Functionalization Ti3C2 MXene by the adsorption or substitution of single metal atom. Appl. Surf. Sci. 2019, 465, 911–918.

64

Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B: Environ. 2018, 228, 87–96.

65

Huang, M.; Fabris, S. Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria: Density functional theory calculations. Phys. Rev. B 2007, 75,081404.

Nano Research
Pages 2862-2869
Cite this article:
Yu K, Wang S, Li Q, et al. Au atoms doped in Ti3C2Tx MXene: Benefiting recovery of oxygen vacancies towards photocatalytic aerobic oxidation. Nano Research, 2022, 15(4): 2862-2869. https://doi.org/10.1007/s12274-021-3878-x
Topics:
Metrics & Citations  
Article History
Copyright
Return