Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm

Min Xi1,2,§()Longchang Xu1,3,§Nian Li1Shudong Zhang1()Zhenyang Wang1()
Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
The Key Laboratory Functional Molecular Solids Ministry of Education, Anhui Normal University, Wuhu 241002, China
School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China

§ Min Xi and Longchang Xu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Cu27S24 nanocage was synthesized and evaluated by a combination of experimental measurement and theoretical calculation. And the developed Cu27S24 “nanoink” and “nanofilm” showed high efficient photothermal performance.

Abstract

Copper sulfide (CuxS) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of CuxS nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu27S24 nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu27S24. And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu27S24 nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu27S24 nanospheres.

Electronic Supplementary Material

Download File(s)
12274_2021_3880_MOESM1_ESM.pdf (974.9 KB)

References

1

Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927–2954.

2

Tang, H. B.; Chen, C. J.; Huang, Z. L.; Bright, J.; Meng, G. W.; Liu, R. S.; Wu, N. Q. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J. Chem. Phys. 2020, 152, 220901.

3

Li, J.; Wong, W. Y.; Tao, X. M. Recent advances in soft functional materials: Preparation, functions and applications. Nanoscale 2020, 12, 1281–1306.

4

Jiang, N. N.; Zhuo, X. L.; Wang, J. F. Active plasmonics: Principles, structures, and applications. Chem. Rev. 2018, 118, 3054–3099.

5

Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.

6

Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.

7

Zhao, L. Y.; Shang, Q. Y.; Li, M. L.; Liang, Y.; Li, C.; Zhang, Q. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res. 2021, 14, 1937–1954.

8

Zhang, C. Y.; Jia, F. C.; Li, Z. Y.; Huang, X.; Lu, G. Plasmon-generated hot holes for chemical reactions. Nano Res. 2020, 13, 3183–3197.

9

Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.

10

West, P.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808.

11

Tang, X.; Ackerman, M. M.; Guyot-Sionnest, P. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices. ACS Nano 2018, 12, 7362–7370.

12

Wu, J. B.; Wang, N.; Yan, X. D.; Wang, H. Emerging low-dimensional materials for mid-infrared detection. Nano Res. 2021, 14, 1863–1877.

13

Agrawal, A.; Johns, R. W.; Milliron, D. J. Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu. Rev. Mater. Res. 2017, 47, 1–31.

14

Xi, M.; Reinhard, B. M. Localized surface plasmon coupling between mid-IR-resonant ITO nanocrystals. J. Phys. Chem. C 2018, 122, 5698–5704.

15

Kuznetsov, A. S. Effect of proximity in arrays of plasmonic nanoantennas on hot spots density: Degenerate semiconductors vs. conventional metals. Plasmonics 2016, 11, 1487–1493.

16

Liu, B.; Ma, Y. R.; Zhao, D. Y.; Xu, L. H.; Liu, F. S.; Zhou, W.; Guo, L. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 2017, 10, 618–625.

17

Abb, M.; Wang, Y. D.; Papasimakis, N.; de Groot, C. H.; Muskens, O. L. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett. 2014, 14, 346–352.

18

Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366.

19

Xu, Q.; Huang, B.; Zhao, Y. F.; Yan, Y. F.; Noufi, R.; Wei, S. H. Crystal and electronic structures of CuxS solar cell absorbers. Appl. Phys. Lett. 2012, 100, 061906.

20

Azzam, S. A.; Boubnov, A.; Hoffman, A. S.; López-Ausens, T.; Chiang, N.; Canning, G.; Sautet, P.; Bare, S. R.; Simonetti, D. A. Insights into copper sulfide formation from Cu and S K edge XAS and DFT studies. Inorg. Chem. 2020, 59, 15276–15288.

21

Huang, S.; Liu, J.; He, Q.; Chen, H. L.; Cui, J. B.; Xu, S. Y.; Zhao, Y. L.; Chen, C. Y.; Wang, L. Y. Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release. Nano Res. 2015, 8, 4038–4047.

22

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

23
He, C. H.; Duan, D. L.; Low, J.; Bai, Y.; Jiang, Y. W.; Wang, X. Y.; Chen, S. M.; Long, R.; Song, L.; Xiong, Y. J. Cu2-xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res., in press, DOI: 10.1007/s12274-021-3532-7.
24

Raj, S. I.; Jaiswal, A.; Uddin, I. Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(II) ions. RSC Adv. 2020, 10, 14050–14059.

25

Zhang, N. W.; Wang, C.; Liu, W. D.; Lei, X. F.; Zhao, J.; Huang, H.; Zhang, X. H.; Hu, Y. M.; Li, Y. B. Contronable synthesis and optical properties of semiconductor CuS nanoplates. J. Hubei Univ. (Nat. Sci.) 2020, 42, 61–66, 71.

26

Shao, X.; Zhang, T. Y.; Li, B.; Wu, Y.; Ma, X. Y.; Wang, J. C.; Jiang, S. Cu-deficient plasmonic Cu2−xS nanocrystals induced tunable photocatalytic activities. CrystEngComm 2020, 22, 678–685.

27

Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K. Highly enhanced full solar spectrum-driven photocatalytic CO2 reduction performance in Cu2−xS/g-C3N4 composite: Efficient charge transfer and mechanism insight. Sol. RRL 2021, 5, 2000326.

28

Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.

29

Gómez, D. E.; Teo, Z. Q.; Altissimo, M.; Davis, T. J.; Earl, S.; Roberts, A. The dark side of plasmonics. Nano Lett. 2013, 13, 3722–3728.

30

Zhou, H. P.; Pan, Z. Z.; Dedo, M. I.; Guo, Z. Y. High-efficiency and high-precision identification of transmitting orbital angular momentum modes in atmospheric turbulence based on an improved convolutional neural network. J. Opt. 2021, 23, 065701.

31

Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iatì, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys.: Condens. Matter 2017, 29, 203002.

32

Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodríguez, E. M.; Solé, J. G. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

33

Takéuchi, Y.; Kudoh, Y.; Sato, G. The crystal structure of covellite CuS under high pressure up to 33 kbar. Z. Krist. 1985, 173, 119–128.

34

Qu, Y. N.; Xu, X. J.; Huang, R. L.; Qi, W.; Su, R. X.; He, Z. M. Enhanced photocatalytic degradation of antibiotics in water over functionalized N, S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight irradiation. Chem. Eng. J. 2020, 382, 123016.

35

Nie, G. D.; Zhang, L.; Lu, X. F.; Bian, X. J.; Sun, W. N.; Wang, C. A one-pot and in situ synthesis of CuS-graphene nanosheet composites with enhanced peroxidase-like catalytic activity. Dalton Trans. 2013, 42, 14006–14013.

36

Pang, X. C.; He, Y. J.; Jung, J. H.; Lin, Z. Q. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 2016, 353, 1268–1272.

37

Pang, M. L.; Zeng, H. C. Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives. Langmuir 2010, 26, 5963–5970.

Nano Research
Pages 3161-3169
Cite this article:
Xi M, Xu L, Li N, et al. Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm. Nano Research, 2022, 15(4): 3161-3169. https://doi.org/10.1007/s12274-021-3880-3
Topics:
Metrics & Citations  
Article History
Copyright
Return