Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

PtNiCu nanowires with advantageous lattice–plane boundary for enhanced ethanol electrooxidation

Shuna Li1Yao Wang2Yunrui Li1Xu Fang1Yujie Liu1Mingxuan Li1Zhen Wang1Yufeng Gao1Haixiao Sun1Fei Gao3Xin Zhang1()Xiaoping Dai1
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of Ministry of Education of China, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

View original image Download original image
The etching-PtNiCu nanowires (e-PtNiCu NWs) enclosed by both (110) and (100) facets evolving from PtNiCu nanowires (PtNiCu NWs) mainly with (111) facets have been fabricated by wet-chemical strategy and acid etching process. The e-PtNiCu NWs exhibited significantly enhancement catalytic activity, anti-poisoning ability of CO intermediates, and stability towards the electro-oxidation reaction of ethanol, which can be ascribed to the synergistic effect between (110) and (100) facets.

Abstract

It is generally accepted that the interface effect and surface electronic structure of catalysts have vital impact on catalytic properties. Understanding and tailoring the atomic arrangement of interface structure are of great importance for electrocatalysis. Herein, we proposed a simple method to synthesize etching-PtNiCu nanowires (e-PtNiCu NWs) enclosed by both (110) and (100) facets evolving from PtNiCu nanowires (PtNiCu NWs) mainly with (111) facets by selectively etching process. After acetic acid etching treatment, the e-PtNiCu NWs possess high total proportions (88.3%) of (110) and (100) facets, whereas the (111) facet is dominant in PtNiCu NWs (64%) by qualitatively and quantitatively evaluation. Combining the structure characterizations and performance tests of ethanol electrooxidation reaction (EOR), we find that the e-PtNiCu NWs display remarkably performance for EOR, which is nearly 4.5 times and 1.5 times enhancement compared with the state-of-the-art Pt/C catalyst, as well as 2.2 and 1.4 times of PtNiCu NWs, in specific activity and mass activity, respectively. The improved performance of e-PtNiCu NWs is attributed to synergistic catalytic effect between (110) and (100) facets that not only significantly decreases the onset potentials of adsorbed CO (COads) but also favors the oxidation of COads on the surface of catalyst. Furthermore, thermodynamics and kinetic studies indicate that the synergistic effect of both (110) and (100) facets in e-PtNiCu NWs can decrease the activation energy barrier and facilitate the charge transfer during the reaction. This work provides a promising approach to construct catalysts with tunable surface electronic structure towards efficient electrocatalysis.

Electronic Supplementary Material

Download File(s)
12274_2021_3881_MOESM1_ESM.pdf (666.5 KB)

References

1

Chang, Q. W.; Kattel, S.; Li, X.; Liang, Z. X.; Tackett, B. M.; Denny, S. R.; Zhang, P.; Su, D.; Chen, J. G.; Chen, Z. Enhancing C-C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts. ACS Catal. 2019, 9, 7618–7625.

2

Zhang, Z. Q.; Wu, Q.; Mao, K.; Chen, Y. G.; Du, L. Y.; Bu, Y. F.; Zhuo, O.; Yang, L. J.; Wang, X. Z.; Hu, Z. Efficient ternary synergism of platinum/tin oxide/nitrogen-doped carbon leading to high-performance ethanol oxidation. ACS Catal. 2018, 8, 8477–8483.

3

Fu, X. Y.; Wan, C. Z.; Zhang, A. X.; Zhao, Z. P.; Huyan, H. X.; Pan, X. Q.; Du, S. J.; Duan, X. F.; Huang, Y. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 2020, 13, 1472–1478.

4

Wu, Y. M.; Han, S. H.; Huang, Y.; Shi, Y. M.; Zhang, B. Boosting ethanol electrooxidation via photothermal effect over palladium/reduced graphene oxide. J. Mater. Chem. A 2018, 6, 18426–18429.

5

Dai, L. X.; Wang, X. Y.; Yang, S. S.; Zhang, T.; Ren, P. J.; Ye, J. Y.; Nan, B.; Wen, X. D.; Zhou, Z. Y.; Si, R. et al. Intrinsic composition and electronic effects of multicomponent platinum nanocatalysts with high activity and selectivity for ethanol oxidation reaction. J. Mater. Chem. A 2018, 6, 11270–11280.

6

Bai, J.; Xiao, X.; Xue, Y. Y.; Jiang, J. X.; Zeng, J. H.; Li, X. F.; Chen, Y. Bimetallic Platinum-rhodium alloy nanodendrites as highly active electrocatalyst for the ethanol oxidation reaction. ACS Appl. Mater. Interfaces 2018, 10, 19755–19763.

7

Huang, L. P.; Zhang, W.; Li, P.; Song, Y. B.; Sheng, H. T.; Du, Y. X.; Wang, Y. G.; Wu, Y.; Hong, X.; Ding, Y. H. et al. Exposing Cu-Rich {110} Active Facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation. Nano Res. 2019, 12, 1147–1153.

8

Yu, L.; Zhou, T. T.; Cao, S. H.; Tai, X. S.; Liu, L. L.; Wang, Y. Suppressing the surface passivation of Pt-Mo nanowires via constructing Mo-Se coordination for boosting HER performance. Nano Res. 2021, 14, 2659–2665.

9

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

10

Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

11

Pang, X. C.; He, Y. J.; Jung, J.; Lin, Z. Q. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 2016, 353, 1268–1272.

12

Wang, Z. L.; Liu, P.; Han, J. H.; Cheng, C.; Ning, S. C.; Hirata, A.; Fujita, T.; Chen, M. W. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Nat. Commun. 2017, 8, 1066.

13

Stamenkovic, V. R.; Fowler, B.; Simon Mun, B.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

14

Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J. Y.; Xie, Z. X.; Xia, Y. N. Pt-based icosahedral nanocages: Using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. Nano Lett. 2016, 16, 1467–1471.

15

Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

16

Hoshi, N.; Kida, K.; Nakamura, M.; Nakada, M.; Osada, K. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 2006, 110, 12480–12484.

17

Jiang, G. M.; Li, X. J.; Shen, Y.; Shi, X. L.; Lv, X. S.; Zhang, X. M.; Dong, F.; Qi, G. X.; Liu, R. Mechanistic insight into the electrocatalytic hydrodechlorination reaction on palladium by a facet effect study. J. Catal. 2020, 391, 414–423.

18

Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.

19

Chang, F. F.; Shan, S. Y.; Petkov, V.; Skeete, Z.; Lu, A. L.; Ravid, J.; Wu, J. F.; Luo, J.; Yu, G.; Ren, Y. et al. Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis. J. Am. Chem. Soc. 2016, 138, 12166–12175.

20

Wang, Y.; Zhuo, H. Y.; Zhang, X.; Li, Y. R.; Yang, J. T.; Liu, Y. J.; Dai, X. P.; Li, M. X.; Zhao, H. H.; Cui, M. L. et al. Interfacial synergy of ultralong jagged Pt85Mo15-S nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution. J. Mater. Chem. A 2019, 7, 24328–24336.

21

Guo, N. K.; Xue, H.; Bao, A.; Wang, Z. H.; Sun, J.; Song, T. S.; Ge, X.; Zhang, W.; Huang, K. K.; He, F. et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angew. Chem., Int. Ed. 2020, 59, 13778–13784.

22

Kwon, T.; Jun, M.; Kim, H. Y.; Oh, A.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv. Funct. Mater. 2018, 28, 1706440.

23

Zhao, Y. P.; Tao, L.; Dang, W.; Wang, L. L.; Xia, M. R.; Wang, B.; Liu, M. M.; Gao, F. M.; Zhang, J. J.; Zhao, Y. F. High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis. Small 2019, 15, 1900288.

24

Jin, Y.; Wang, P. T.; Mao, X. N.; Liu, S. H.; Li, L. G.; Wang, L.; Shao, Q.; Xu, Y.; Huang, X. Q. A top-down strategy to realize surface reconstruction of small-sized platinum-based nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2021, 60, 17430–17434.

25

Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

26

Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159–16167.

27

Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.

28

Gong, M. X.; Deng, Z. P.; Xiao, D. D.; Han, L. L.; Zhao, T. H.; Lu, Y.; Shen, T.; Liu, X. P.; Lin, R. Q.; Huang, T. et al. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: Integrating multiple advantages into one catalyst. ACS Catal. 2019, 9, 4488–4494.

29

Liu, Y. J.; Ren, G. H.; Wang, M. Q.; Zhang, Z. C.; Liang, Y.; Wu, S. S.; Shen, J. Facile synthesis of trimetallic PtAuCu alloy nanowires as High-performance electrocatalysts for methanol oxidation reaction. J. Alloys Compd. 2019, 780, 504–511.

30

Liu, X. J.; Cui, C. H.; Li, H. H.; Lei, Y.; Zhuang, T. T.; Sun, M.; Arshad, M. N.; Albar, H. A.; Sobahi, T. R.; Yu, S. H. Hollow ternary PtPdCu nanoparticles: A superior and durable cathodic electrocatalyst. Chem. Sci. 2015, 6, 3038–3043.

31

Jeong, G. H.; Kim, M.; Lee, Y. W.; Choi, W.; Taek Oh, W.; Park, Q. H.; Han, S. W. Polyhedral Au nanocrystals exclusively bound by {110} facets: The rhombic dodecahedron. J. Am. Chem. Soc. 2009, 131, 1672–1673.

32

Wu, Y. E.; Wang, D. S.; Niu, Z. Q.; Chen, P. C.; Zhou, G.; Li, Y. D. A strategy for designing a concave Pt-Ni alloy through controllable chemical etching. Angew. Chem. 2012, 124, 12692–12696.

33

Tang, Y.; Cheng, W. L. Nanoparticle-modified electrode with size- and shape-dependent electrocatalytic activities. Langmuir 2013, 29, 3125–3132.

34

Duan, W. C.; Zhang, P.; Xiahou, Y. J.; Song, Y. H.; Bi, C. X.; Zhan, J.; Du, W.; Huang, L. H.; Möhwald, H.; Xia, H. B. Regulating surface facets of metallic aerogel electrocatalysts by size-dependent localized Ostwald ripening. ACS Appl. Mater. Interfaces 2018, 10, 23081–23093.

35

Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

36

Zorko, M.; Martins, P. F. B. D.; Connell, J. G.; Lopes, P. P.; Markovic, N. M.; Stamenkovic, V. R.; Strmcnik, D. Improved rate for the oxygen reduction reaction in a sulfuric acid electrolyte using a Pt(111) surface modified with melamine. ACS Appl. Mater. Interfaces 2021, 13, 2, 3369–3376.

37

Yang, Y.; Zeng, J. C.; Shu, Y. J.; Gao, Q. S. Revealing facet effects of palladium nanocrystals on electrochemical biosensing. ACS Appl. Mater. Interfaces 2020, 12, 15622–15630.

38

Chang, F. F.; Bai, Z. Y.; Li, M.; Ren, M. Y.; Liu, T. C.; Yang, L.; Zhong, C. J.; Lu, J. Strain-modulated platinum-palladium nanowires for oxygen reduction reaction. Nano Lett. 2020, 20, 2416–2422.

39

van der Vliet, D. F.; Wang, C.; Li, D. G.; Paulikas, A. P.; Greeley, J.; Rankin, R. B.; Strmcnik, D.; Tripkovic, D.; Markovic, N. M.; Stamenkovic, V. R. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem., Int. Ed. 2012, 51, 3139–3142.

40

Zhang, S.; Guo, S. J.; Zhu, H. Y.; Su, D.; Sun, S. H. Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles. J. Am. Chem. Soc. 2012, 134, 5060–5063.

41

Wang, D. Y.; Chou, H. L.; Lin, F. C.; Lai, F. J.; Chen, C. H.; Lee, J. F.; Hwang, B. J.; Chen, C. C. Simple replacement reaction for the preparation of ternary Fe1−xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 10011–10020.

42

Tan, Y. M.; Fan, J. M.; Chen, G. X.; Zheng, N. F.; Xie, Q. J. Au/Pt and Au/Pt3Ni nanowires as self-supported electrocatalysts with high activity and durability for oxygen reduction. Chem. Commun. 2011, 47, 11624–11626.

43

Wang, Z. X.; Yao, X. Z.; Kang, Y. Q.; Miao, L. Q.; Xia, D. S.; Gan, L. Structurally ordered low-Pt intermetallic electrocatalysts toward durably high oxygen reduction reaction activity. Adv. Funct. Mater. 2019, 29, 1902987.

44

Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.

45

Yu, K. M.; Ning, G. Q.; Yang, J. T.; Wang, Y.; Zhang, X.; Qin, Y. C.; Luan, C. L.; Yu, L.; Jiang, Y.; Luan, X. B. et al. Restructured PtNi on ultrathin nickel hydroxide for enhanced performance in hydrogen evolution and methanol oxidation. J. Catal. 2019, 375, 267–278.

46

Liu, Y. Q.; Ma, H. Y.; Lei, D.; Lou, L. L.; Liu, S. X.; Zhou, W. Z.; Wang, G. C.; Yu, K. Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACS Catal. 2019, 9, 8306–8315.

47

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat. 2021, 2, 56–75.

48

Xu, Y. C.; Cui, X. Q.; Wei, S. T.; Zhang, Q. H.; Gu, L.; Meng, F. Q.; Fan, J. C.; Zheng, W. T. Highly active zigzag-like Pt-Zn alloy nanowires with high-index facets for alcohol electrooxidation. Nano Res. 2019, 12, 1173–1179.

49

Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037–5043.

50

Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

51

Zhang, N.; Zhu, Y. M.; Shao, Q.; Zhu, X.; Huang, X. Q. Ternary PtNi/PtxPb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions. J. Mater. Chem. A 2017, 5, 18977–18983.

52

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C-C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.

53

Li, P. T.; Liu, K.; Ye, J. Y.; Xue, F.; Cheng, Y.; Lyu, Z. X.; Liao, X. Y.; Wang, W.; Zhang, Q. B.; Chen, X. J. et al. Facilitating the C-C bond cleavage on sub-10 nm concavity-tunable Rh@Pt core–shell nanocubes for efficient ethanol electrooxidation. J. Mater. Chem. A 2019, 7, 17987–17994.

54

Huang, L. P.; Zhang, W.; Zhong, Y. F.; Li, P.; Xiang, D.; Uddin, W.; Li, X. W.; Wang, Y. G.; Yuan, X. Y.; Wang, D. S. et al. Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols. Sci. China Mater. 2021, 64, 601–610.

55

Song, P. P.; Cui, X. N.; Shao, Q.; Feng, Y. G.; Zhu, X.; Huang, X. Q. Networked Pt-Sn nanowires as efficient catalysts for alcohol electrooxidation. J. Mater. Chem. A 2017, 5, 24626–24630.

56

Arán-Ais, R. M.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. On the quality and stability of preferentially oriented (100) Pt nanoparticles: An electrochemical insight. J. Electroanal. Chem. 2018, 808, 433–438.

57

Wang, E. D.; Xu, J. B.; Zhao, T. S. Density functional theory studies of the structure sensitivity of ethanol oxidation on palladium surfaces. J. Phys. Chem. C 2010, 114, 10489–10497.

58

Wang, H. F.; Liu, Z. P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 2008, 130, 10996–11004.

59

Lu, Q. Q.; Sun, L. T.; Zhao, X.; Huang, J. S.; Han, C.; Yang, X. R. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11, 2562–2572.

60

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

61

Zhu, J. Y.; Chen, S. Q.; Xue, Q.; Li, F. M.; Yao, H. C.; Xu, L.; Chen, Y. Hierarchical porous Rh nanosheets for methanol oxidation reaction. Appl. Catal. B:Environ. 2020, 264, 118520.

62

Wang, Y.; Zou, S. Z.; Cai, W. B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507–1534.

63

Wang, W.; Zhang, X.; Zhang, Y. H.; Chen, X. W.; Ye, J. Y.; Chen, J. Y.; Lyu, Z. X.; Chen, X. J.; Kuang, Q.; Xie, S. F. et al. Edge enrichment of ultrathin 2D PdPtCu trimetallic nanostructures effectuates top-ranked ethanol electrooxidation. Nano Lett. 2020, 20, 5458–5464.

64

Zhu, Z. Q.; Liu, F.; Fan, J. C.; Li, Q. X.; Min, Y. L.; Xu, Q. J. C2 alcohol oxidation boosted by trimetallic PtPbBi hexagonal nanoplates. ACS Appl. Mater. Interfaces 2020, 12, 52731–52740.

65

Souza-Garcia, J.; Herrero, E.; Feliu, J. M. Breaking the C-C bond in the ethanol oxidation reaction on platinum electrodes: Effect of steps and ruthenium adatoms. ChemPhysChem 2010, 11, 1391–1394.

Nano Research
Pages 2877-2886
Cite this article:
Li S, Wang Y, Li Y, et al. PtNiCu nanowires with advantageous lattice–plane boundary for enhanced ethanol electrooxidation. Nano Research, 2022, 15(4): 2877-2886. https://doi.org/10.1007/s12274-021-3881-2
Topics:
Metrics & Citations  
Article History
Copyright
Return