Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

High performance Zn-I2 battery with acetonitrile electrolyte working at low temperature

Chunlai SongZongshuai GongChong BaiFengshi CaiZhihao Yuan()Xizheng Liu()
School of Materials Science and Engineering, Tianjin Key Laboratory of Photoelectric Materials & Devices, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin 300384, China
Show Author Information

Graphical Abstract

View original image Download original image
The Zn-I2 battery has been designed and assembled for low temperature application, which exhibited over 7,000 cycle life at −20 °C. Even at −45.7 °C, a blue light emitting diode (LED) can be well lighted up.

Abstract

Large scale applications of metal-iodine batteries working at sub-zero degree have been challenged by the limited capacity and performance degradation. Herein, we firstly propose a Zn-I2 battery working at low temperature with a carbon composite material/iodine (CCM-I2) cathode, a Zn anode and an environmentally tolerable Zn(ClO4)2-ACN electrolyte. The CCM framework with hierarchical porous structure endows a powerful iodine-anchoring to overcome undesirable dissolution of iodine in organic electrolyte, and the Zn(ClO4)2-ACN electrolyte with low freezing point and high ionic conductivity enhances the low temperature performance. The synergies enable an efficiently reversible conversion of Zn-I2 battery even at −40 °C. Therefore, the resultant Zn-I2 battery delivers a high specific capacity of 200 mAh·g−1, which is fairly approximate to the theoretical capacity of I2 (211 mAh·g−1) and a superior cycling stability with minimal capacity fading of 0.00043% per cycle over 7,000 times under 2C at −20 °C. Furthermore, even at −40 °C, this Zn-I2 battery still exhibits a good capacity retention of 68.7% compared to the capacity at 25 °C and a rapid capacity-recover ability with elevating temperature change. Our results distinctly indicate this Zn-I2 battery can be competent for the practical application under low temperature operation.

Electronic Supplementary Material

Download File(s)
12274_2021_3884_MOESM1_ESM.pdf (771.1 KB)

References

1

Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

2

Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, 1908121.

3

Li, H. Z.; Firby, C. J.; Elezzabi, A. Y. Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 2019, 3, 2268–2278.

4

Wu, B. K.; Luo, W.; Li, M.; Zeng, L.; Mai, L. Q. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021, 14, 3174–3187.

5

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

6

Wu, X. Y.; Xu, Y. K.; Zhang, C.; Leonard, D. P.; Markir, A.; Lu, J.; Ji, X. L. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 2019, 141, 6338–6344.

7

House, R. A.; Maitra, U.; Perez-Osorio, M. A.; Lozano, J. G.; Jin, L. Y.; Somerville, J. W.; Duda, L. C.; Nag, A.; Walters, A.; Zhou, K. J. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 2020, 577, 502–508.

8

Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 2019, 12, 1999–2009.

9

Tang, B.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

10

Cui, J.; Guo, Z. W.; Yi, J.; Liu, X. Y.; Wu, K.; Liang, P. C.; Li, Q.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y. et al. Organic cathode materials for rechargeable zinc batteries: Mechanisms, challenges, and perspectives. ChemSusChem 2020, 13, 2160–2185.

11

Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.

12

Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.

13

Simonov, A.; De Baerdemaeker, T.; Boström, H. L. B.; Ríos Gómez, M. L.; Gray, H. J.; Chernyshov, D.; Bosak, A.; Bürgi, H. B.; Goodwin, A. L. Hidden diversity of vacancy networks in prussian blue analogues. Nature 2020, 578, 256–260.

14

Nai, J. W.; Lou, X. W. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 2019, 31, 1706825.

15

Yang, Q.; Mo, F. N.; Liu, Z. X.; Ma, L. T.; Li, X. L.; Fang, D. L.; Chen, S. M.; Zhang, S. J.; Zhi, C. Y. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 2019, 31, 1901521.

16

Jiang, C. L.; Xiang, L.; Miao, S. J.; Shi, L.; Xie, D. H.; Yan, J. X.; Zheng, Z. J.; Zhang, X. M.; Tang, Y. B. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 2020, 32, 1908470.

17

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

18

Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Stor. Mater. 2019, 20, 410–437.

19

Guo, Z. L.; Wang, T. S.; Wei, H. H.; Long, Y. Z.; Yang, C.; Wang, D.; Lang, J. L.; Huang, K.; Hussain, N.; Song, C. X. et al. Ice as solid electrolyte to conduct various kinds of ions. Angew. Chem., Int. Ed. 2019, 58, 12569–12573.

20

Chang, N. N.; Li, T. Y.; Li, R.; Wang, S. N.; Yin, Y. B.; Zhang, H. M.; Li, X. F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 2020, 13, 3527–3535.

21

Zhao, Y. W.; Chen, Z.; Mo, F. N.; Wang, D. H.; Guo, Y.; Liu, Z. X.; Li, X. L.; Li, Q.; Liang, G. J.; Zhi, C. Y. Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv. Sci. 2020, 8, 2002590.

22

Wang, N.; Dong, X. L.; Wang, B. L.; Guo, Z. W.; Wang, Z.; Wang, R. H.; Qiu, X.; Wang, Y. G. Zinc-organic battery with a wide operation-temperature window from -70 to 150 °C. Angew. Chem., Int. Ed. 2020, 59, 14577–14583.

23

Mo, F. N.; Liang, G. L.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci. 2019, 12, 706–715.

24

Yang, W. H.; Du, X. F.; Zhao, J. W.; Chen, Z.; Li, J. J.; Xie, J.; Zhang, Y. J.; Cui, Z. L.; Kong, Q. Y.; Zhao, Z. M. et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 2020, 4, 1557–1574.

25

Ma, J. Z.; Liu, M. M.; He, Y. L.; Zhang, J. T. Iodine redox chemistry in rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 12636–12647.

26

Bai, C.; Cai, F. S.; Wang, L. C.; Guo, S. Q.; Liu, X. Z.; Yuan, Z. H. A sustainable aqueous Zn-I2 battery. Nano Res. 2018, 11, 3548–3554.

27

Yang, Y. Y. C.; Davies, D. M.; Yin, Y. J.; Borodin, O.; Lee, J. Z.; Fang, C. C.; Olguin, M.; Zhang, Y. H.; Sablina, E. S.; Wang, X. F. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 2019, 3, 1986–2000.

28

Dong, X. L.; Lin, Y. X.; Li, P. L.; Ma, Y. Y.; Huang, J. H.; Bin, D.; Wang, Y. G.; Qi, Y.; Xia, Y. Y. High-energy rechargeable metallic lithium battery at −70 °C enabled by a cosolvent electrolyte. Angew. Chem., Int. Ed. 2019, 58, 5623–5627.

29

Dong, X. L.; Guo, Z. W.; Guo, Z. Y.; Wang, Y. G.; Xia, Y. Y. Organic batteries operated at −70 °C. Joule 2018, 2, 902–913.

30

Dong, X. L.; Yang, Y.; Wang, B. L.; Cao, Y. J.; Wang, N.; Li, P. L.; Wang, Y. G.; Xia, Y. Y. Low-temperature charge/discharge of rechargeable battery realized by intercalation pseudocapacitive behavior. Adv. Sci. 2020, 7, 2000196.

31

Pan, H. L.; Li, B.; Mei, D. H.; Nie, Z. M.; Shao, Y. Y.; Li, G. S.; Li, X. S.; Han, K. S.; Mueller, K. T.; Sprenkle, V. et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett. 2017, 2, 2674–2680.

32

Li, Y. X.; Liu, L. J.; Li, H. X.; Cheng, F. Y.; Chen, J. Rechargeable aqueous zinc-iodine batteries: Pore confining mechanism and flexible device application. Chem. Commun. 2018, 54, 6792–6795.

33

Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.

34

Yu, D. L.; Kumar, A.; Nguyen, T. A.; Nazir, M. T.; Yasin, G. High-voltage and ultrastable aqueous zinc-iodine battery enabled by N-doped carbon materials: Revealing the contributions of nitrogen configurations. ACS Sustainable Chem. Eng. 2020, 8, 13769–13776.

35

Tian, H. J.; Gao, T.; Li, X. G.; Wang, X. W.; Luo, C.; Fan, X. L.; Yang, C. Y.; Suo, L. M.; Ma, Z. H.; Han, W. Q. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 2017, 8, 14083.

36

Zhang, S. L.; Tan, X. J.; Meng, Z.; Tian, H. J.; Xu, F. F.; Han, W. Q. Naturally abundant high-performance rechargeable aluminum/iodine batteries based on conversion reaction chemistry. J. Mater. Chem. A 2018, 6, 9984–9996.

37

Lu, K.; Zhang, H.; Song, B.; Pan, W.; Ma, H. Y.; Zhang, J. T. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochim. Acta 2019, 296, 755–761.

38

Li, X. L.; Li, M.; Huang, Z. D.; Liang, G. J.; Chen, Z.; Yang, Q.; Huang, Q.; Zhi, C. Y. Activating the I0/I+ redox couple in an aqueous I2-Zn battery to achieve a high voltage plateau. Energy Environ. Sci. 2021, 14, 407–413.

39

Zeng, X. M.; Meng, X. J.; Jiang, W.; Liu, J.; Ling, M.; Yan, L. J.; Liang, C. D. Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc-iodine batteries. ACS Sustainable Chem. Eng. 2020, 8, 14280–14285.

40

Hong, J. J.; Zhu, L. D.; Chen, C.; Tang, L. T.; Jiang, H.; Jin, B.; Gallagher, T. C.; Guo, Q. B.; Fang, C.; Ji, X. L. A dual plating battery with the iodine/[ZnIx(OH2)4-x](2-x) cathode. Angew. Chem., Int. Ed. 2019, 58, 15910–15915.

41

Tian, H. J.; Zhang, S. L.; Meng, Z.; He, W.; Han, W. Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2017, 2, 1170–1176.

Nano Research
Pages 3170-3177
Cite this article:
Song C, Gong Z, Bai C, et al. High performance Zn-I2 battery with acetonitrile electrolyte working at low temperature. Nano Research, 2022, 15(4): 3170-3177. https://doi.org/10.1007/s12274-021-3884-z
Topics:
Metrics & Citations  
Article History
Copyright
Return