AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-templated formation of twin-like metal–organic framework nanobricks as pre-catalysts for efficient water oxidation

Fei-Xiang Ma1,2Fucong Lyu3Yingxue Diao4BinBin Zhou1,2,3Jianghua Wu5Fengwen Kang3Zebiao Li4Xufen Xiao4Peng Wang5Jian Lu1,2,3,6( )Yang Yang Li1,2,4( )
Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
Department of Mechanical Engineering, City University of Hong Kong, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Hong Kong 999077, China
Department of Material Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures and Center for the Microstructures of Quantum Materials, Nanjing University, Nanjing 210093, China
CityU-Shenzhen Futian Research Institute, No. 3, Binglang Road, Fubao Street, Futian District, Shenzhen 518045, China
Show Author Information

Graphical Abstract

Single-crystalline metal-organic framework (MOF) twin-like nanobricks are fabricated via a selftemplated process, which mainly includes selective epitaxial growth of Fe-rich MOF layer and simultaneously dissolution of the pre-formed sandwich layers of Ni-rich MOFs. The relevant integrated electrode exhibits outstanding electrochemical performance for water oxidation. Interestingly, the NiFe-MOFs based pre-catalysts can be topochemically regulated into porous and low-crystalline NiFeOx structures during water oxidation.

Abstract

Fabrication of single-crystalline metal-organic framework (MOF) hollow nanostructures with two-dimensional (2D) morphologies is a challenging task. Herein, twin-like MOF nanobricks, a quasi-hollow 2D architecture, with multi-metal nodes and replaceable organic ligands, are uniformly and firmly grown on conductive Ni foam through a generic one-pot approach. The formation process of twin-like MOF nanobricks mainly includes selective epitaxial growth of Fe-rich MOF layer and simultaneously dissolution of the pre-formed Ni-rich metal-organic frameworks (MOFs), all of which can be ascribed to a special self-templated mechanism. The fantastic structural merits of twin-like MOF nanobrick arrays, featuring highly exposed active sites, remarkable electrical conductivity, and hierarchical porosities, enable this material for efficient electrocatalysis. Using bimetallic NiFe-MOFs grown on Ni foam as an example, the resultant twin-like nanobrick arrays can be directly utilized as three-dimensional (3D) integrated electrode for high-performance water oxidation in 1 M KOH with a low overpotential, fast reaction kinetics (28.5 mV·dec−1), and superb stability. Interestingly, the unstable NiFe-MOFs were served as an oxygen evolution reaction (OER) pre-catalyst and the single-crystalline NiFe-MOF precursor can be in-situ topochemically regulated into porous and low-crystalline NiFeOx nanosheets during the OER process. This work extends the hollowing strategy to fabricate hollow MOFs with 2D architectures and highlights their direct utilization for advanced electrocatalysis.

Electronic Supplementary Material

Download File(s)
12274_2021_3885_MOESM1_ESM.pdf (1.6 MB)

References

1

Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

2

Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.

3

Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

4

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

5

Chen, Z. J.; Cao, G. X.; Gan, L. Y.; Dai, H.; Xu, N.; Zang, M. J.; Dai, H. B.; Wu, H.; Wang, P. Highly dispersed platinum on honeycomb-like NiO@Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction. ACS Catal. 2018, 8, 8866–8872.

6

Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

7

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

8

Yang, Y. C.; Yang, Y. W.; Liu, Y. Y.; Zhao, S. L.; Tang, Z. Y. Metal-organic frameworks for electrocatalysis: Beyond their derivatives. Small Sci. 2021, 2100015.

9

Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983–11060.

10

Hai, G. T.; Jia, X. L.; Zhang, K. Y.; Liu, X.; Wu, Z. Y.; Wang, G. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy 2018, 44, 345–352.

11

Zhou, L.; Zhuang, Z. C.; Zhao, H. H.; Lin, M. T.; Zhao, D. Y.; Mai, L. Q. Intricate hollow structures:Controlled synthesis and applications in energy storage and conversion. Adv. Mater. 2017, 29, 1602914.

12

Liu, D.; Wan, J. W.; Pang, G. S.; Tang, Z. Y. Hollow metal-organic-framework micro/nanostructures and their derivatives: Emerging multifunctional materials. Adv. Mater. 2019, 31, 1803291.

13

Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 126, 12725–12729.

14

Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 5512–5516.

15

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

16

Li, Y. Z.; Fu, Z. H.; Xu, G. Metal-organic framework nanosheets: Preparation and applications. Coord. Chem. Rev. 2019, 388, 79–106.

17

Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

18

Fang, W. S.; Huang, L.; Zaman, S.; Wang, Z. T.; Han, Y. J.; Xia, B. Y. Recent progress on two-dimensional electrocatalysis. Chem. Res. Chin. Univ. 2020, 36, 611–621.

19

Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

20

Raja, D. S.; Chuah, X. F.; Lu, S. Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065.

21

Mesbah, A.; Rabu, P.; Sibille, R.; Lebegue, S.; Mazet, T.; Malaman, B.; Francois, M. From hydrated Ni3(OH)2(C8H4O4)2(H2O)4 to anhydrous Ni2(OH)2(C8H4O4): Impact of structural transformations on magnetic properties. Inorg. Chem. 2014, 53, 872–881.

22

Carton, A.; Mesbah, A.; Mazet, T.; Porcher, F.; François, M. Ab initio crystal structure of nickel(II) hydroxy-terephthalate by synchrotron powder diffraction and magnetic study. Solid State Sci. 2007, 9, 465–471.

23

Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557.

24

Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Regli, L.; Bonino, F.; Damin, A.; Lillerud, K. P.; Bjorgen, M.; Zecchina, A. Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 2004, 2300–2301.

25

Yu, L.; Wu, H. B.; Lou, X. W. Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 2017, 50, 293–301.

26

Ma, F. X.; Hu, H.; Wu, H, B.; Xu, C. Y.; Xu, Z. C.; Zhen, L.; Lou, X. W. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 2015, 27, 4097–4101.

27

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

28

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

29

Dionigi, F.; Strasser, P. NiFe-based (oxy) hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 2016, 6, 1600621.

30

Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

31

Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

32

Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts. ACS Energy Lett. 2017, 2, 1937–1938.

33

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

34

Tareen, A. K.; Priyanga, G. S.; Khan, K.; Pervaiz, E.; Thomas, T.; Yang, M. H. Nickel-based transition metal nitride electrocatalysts for the oxygen evolution reaction. ChemSusChem 2019, 12, 3941–3954.

35

Liu, M.; Kong, L. J.; Wang, X. M.; He, J.; Bu, X. H. Engineering bimetal synergistic electrocatalysts based on metal-organic frameworks for efficient oxygen evolution. Small 2019, 15, 1903410.

36

Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2003916.

37

Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021.

38

Yang, H.; Gong, L. Q.; Wang, H. M.; Dong, C. L.; Wang, J. L.; Qi, K.; Liu, H. F.; Guo, X. P.; Xia, B. Y. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075.

39

Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

40

Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

41

Wang, B. Q.; Shang, J.; Guo, C.; Zhang, J. Z.; Zhu, F. N.; Han, A. J.; Liu, J. F. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays. Small 2019, 15, 1804761.

42

Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

43

Qian, Q. Z.; Li, Y. P.; Liu, Y.; Yu, L.; Zhang, G. Q. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139.

44

Wang, Y.; Liu, B. R.; Shen, X. J.; Arandiyan, H.; Zhao, T. W.; Li, Y. B.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A. et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2003759.

45

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

46

Zhang, F.; Shi, Y. M.; Xue, T.; Zhang, J. F.; Liang, Y.; Zhang, B. In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: A highly efficient electrocatalyst towards water oxidation. Sci. China Mater. 2017, 60, 324–334.

47

Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581.

48

Thangavel, P.; Ha, M. R.; Kumaraguru, S.; Meena, A.; Singh, A. N.; Harzandi, A. M.; Kim, K. S. Graphene-nanoplatelets-supported NiFe-MOF: High-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ. Sci. 2020, 13, 3447–3458.

49

Cai, W. Z.; Chen, R.; Yang, H. B.; Tao, H. B.; Wang, H. Y.; Gao, J. J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. Nano Lett. 2020, 20, 4278–4285.

50

Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

51

Liu, X.; Meng, J. S.; Zhu, J. X.; Huang, M.; Wen, B.; Guo, R. T.; Mai, L. Q. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2021, 33, 2007344.

Nano Research
Pages 2887-2894
Cite this article:
Ma F-X, Lyu F, Diao Y, et al. Self-templated formation of twin-like metal–organic framework nanobricks as pre-catalysts for efficient water oxidation. Nano Research, 2022, 15(4): 2887-2894. https://doi.org/10.1007/s12274-021-3885-y
Topics:

974

Views

15

Crossref

16

Web of Science

16

Scopus

2

CSCD

Altmetrics

Received: 06 August 2021
Revised: 08 September 2021
Accepted: 13 September 2021
Published: 04 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return