AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs

Shan Bao1Haiyue Yu1Guoyang Gao1Hongyang Zhu2Dingsheng Wang3Peifen Zhu4( )Guofeng Wang1 ( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
School of Physics and Electronic Engineering, Linyi University, Linyi 276005, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104, USA
Show Author Information

Graphical Abstract

Rare-earth single atom based NaGdF4:Tb3+/Eu3+@C:N/Eu3+ single phosphor with tunable full-color luminescence was reported, and the results of density functional theory (DFT) calculation prove that C atoms are more favorable for anchoring Eu3+ single atoms. The white light-emitting diode (WLED) device constructed using this single phosphor has a stable and excellent color rendering index and a controllable color temperature, and has broad application possibilities in WLEDs.

Abstract

High-quality single-component white phosphors are instrumental in realizing high-efficiency devices. Rare earth fluorides and carbon quantum dots have great potential in the white light-emitting diode (WLED) field due to their unique advantages. Here, Rare-earth single atom based NaGdF4:Tb3+/Eu3+@C:N/Eu3+ single phosphor with tunable full-color luminescence was reported. The results of density functional theory (DFT) calculation and experimental characterization show that C atoms cannot be replaced by Eu3+, but C atoms are more favorable for anchoring Eu3+ single atoms. The DFT was employed to optimize the structures of the C:N/Eu3+ and NaGdF4:Tb3+/Eu3+, and calculate the work function, optical properties, and charge density difference. The obtained tunable full-color single phosphor can emit stable light from blue to red or even white. The constructed WLED devices also have stable and excellent color performance, that is, a color rendering index of up to 95 and a lower color temperature, and it has broad application possibilities in WLEDs.

Electronic Supplementary Material

Download File(s)
12274_2021_3886_MOESM1_ESM.pdf (4.1 MB)

References

1

Nair, G. B.; Swart, H. C.; Dhoble, S. J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622.

2

Joo, W. J.; Kyoung, J.; Esfandyarpour, M.; Lee, S. H.; Koo, H.; Song, S.; Kwon, Y. N.; Song, S. H.; Bae, J. C.; Jo, A. et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch. Science 2020, 370, 459–463.

3

Bando, Y. A new path in lighting and display: White light emitting diode with a single active layer. Sci. Bull. 2021, 66, 860–861.

4

Chen, Z.; Ho, C. L.; Wang, L. Q.; Wong, W. Y. Single-molecular white-light emitters and their potential WOLED applications. Adv. Mater. 2020, 32, 1903269.

5

Ding, D. X.; Wang, Z. C.; Li, C. Y.; Zhang, J.; Duan, C. B.; Wei, Y.; Xu, H. Highly efficient and color-stable thermally activated delayed fluorescence white light-emitting diodes featured with single-doped single emissive layers. Adv. Mater. 2020, 32, 1906950.

6

Li, D. B.; Jiang, K.; Sun, X. J.; Guo, C. L. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43–110.

7

Wang, L.; Wang, X.; Bertram, F.; Sheng, B. W.; Hao, Z. B.; Luo, Y.; Sun, C. Z.; Xiong, B.; Han, Y. J.; Wang, J. et al. Color-tunable 3D InGaN/GaN multi-quantum-well light-emitting-diode based on microfacet emission and programmable driving power supply. Adv. Opt. Mater. 2021, 9, 2001400.

8

Dang, P. P.; Li, G. G.; Yun, X. H.; Zhang, Q. Q.; Liu, D. J.; Lian, H. Z.; Shang, M. M.; Lin, J. Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: Non-concentration quenching and negative thermal expansion. Light:Sci. Appl. 2021, 10, 29.

9

Huang, X. Y.; Wang, S. Y.; Li, B.; Sun, Q.; Guo, H. High-brightness and high-color purity red-emitting Ca3Lu(AlO)3(BO3)4: Eu3+ phosphors with internal quantum efficiency close to unity for near-ultraviolet-based white-light-emitting diodes. Opt. Lett. 2018, 43, 1307–1310.

10

Wei, Y.; Yang, H.; Gao, Z. Y.; Liu, Y. X.; Xing, G. C.; Dang, P. P.; Al Kheraif, A. A.; Li, G. G.; Lin, J.; Liu, R. S. Strategies for designing antithermal-quenching red phosphors. Adv. Sci. 2020, 7, 1903060.

11

Mondal, N.; De, A.; Samanta, A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Lett. 2019, 4, 32–39.

12

Luo, J. J.; Wang, X. M.; Li, S. R.; Liu, J.; Guo, Y. M.; Niu, G. D.; Yao, L.; Fu, Y. H.; Gao, L.; Dong, Q. S. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541–545.

13

Hoerder, G. J.; Seibald, M.; Baumann, D.; Schröder, T.; Peschke, S.; Schmid, P. C.; Tyborski, T.; Pust, P.; Stoll, I.; Bergler, M. et al. Sr[Li2Al2O2N2]: Eu2+-A high performance red phosphor to brighten the future. Nat. Commun. 2019, 10, 1824.

14

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

15

Zhao, M.; Xia, Z. G.; Huang, X. X.; Ning, L. X.; Gautier, R.; Molokeev, M. S.; Zhou, Y. Y.; Chuang, Y. C.; Zhang, Q. Y.; Liu, Q. L. et al. Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability. Sci. Adv. 2019, 5, eaav0363.

16

Yang, Z. W.; Gao, M. Y.; Wu, W. J.; Yang, X. Y.; Sun, X. W.; Zhang, J. H.; Wang, H. C.; Liu, R. S.; Han, C. Y.; Yang, H. et al. Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Mater. Today 2019, 24, 69–93.

17

Zhou, G. J.; Su, B. B.; Huang, J. L.; Zhang, Q. Y.; Xia, Z. G. Broad-band emission in metal halide perovskites: Mechanism, materials, and applications. Mater. Sci. Eng. R: Rep. 2020, 141, 100548.

18

Wang, Z. F.; Liu, Y.; Zhen, S. J.; Li, X. X.; Zhang, W. G.; Sun, X.; Xu, B. Y.; Wang, X.; Gao, Z. H.; Meng, X. G. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes. Adv. Sci. 2020, 7, 1902688.

19

Boddula, R.; Tagare, J.; Singh, K.; Vaidyanathan, S. White light-emissive europium complexes and their versatile applications. Mater. Chem. Front. 2021, 5, 3159–3175.

20

Yuan, H. L.; Massuyeau, F.; Gautier, N.; Kama, A. B.; Faulques, E.; Chen, F.; Shen, Q.; Zhang, L. M.; Paris, M.; Gautier, R. Doped lead halide white phosphors for very high efficiency and ultra-high color rendering. Angew. Chem., Int. Ed. 2020, 59, 2802–2807.

21

Xu, H. Y.; Yu, W. J.; Pan, K.; Wang, G. F.; Zhu, P. F. Confinement and antenna effect for ultrasmall Y2O3: Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. Nano Res. 2021, 14, 720–729.

22

Gao, G. Y.; Li, Y. N.; Yu, W. J.; Wang, G. F.; Zhu, P. F.; Qin, W. P.; Wang, D. S. Enhanced luminescence through interface energy transfer in hierarchical heterogeneous nanocomposites and application in white LEDs. J. Colloid Interface Sci. 2021, 583, 204–213.

23

Xu, L. N.; Li, Y. N.; Pan, Q. J.; Wang, D.; Li, S. J.; Wang, G. F.; Chen, Y. J.; Zhu, P. F.; Qin, W. P. Dual-mode light-emitting lanthanide metal-organic frameworks with high water and thermal stability and their application in white LEDs. ACS Appl. Mater. Interfaces 2020, 12, 18934–18943.

24

Zhang, W. Y.; Thapa, S.; Sun, Y.; Norville, S.; Zhu, H. Y.; Zhu, P. F.; Wang, G. F.; Qin, W. P. Substitution of Pb with Mn2+/Nd3+ to improve the luminescence and thermal stability of Cs4PbBr6. Chem. Eng. J. 2021, 423, 130186.

25

Wang, L.; Li, W. T.; Yin, L. Q.; Liu, Y. J.; Guo, H. Z.; Lai, J. W.; Han, Y.; Li, G.; Li, M.; Zhang, J. H. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772.

26

Rad, R. R.; Gualdrón-Reyes, A. F.; Masi, S.; Ganji, B. A.; Taghavinia, N.; Gené-Marimon, S.; Palomares, E.; Mora-Seró, I. Tunable carbon-CsPbI3 quantum dots for white LEDs. Adv. Opt. Mater. 2021, 9, 2001508.

27

Qin, X.; Liu, X. W.; Huang, W.; Bettinelli, M.; Liu, X. G. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects. Chem. Rev. 2017, 117, 4488–4527.

28

Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.

29

Hong, F.; Xu, H. P.; Pang, G.; Liu, G. X.; Dong, X. T.; Yu, W. S. Moisture resistance, luminescence enhancement, energy transfer and tunable color of novel core-shell structure BaGeF6:Mn4+ phosphor. Chem. Eng. J. 2020, 390, 124579.

30

Ding, M. Y.; Dong, B.; Lu, Y.; Yang, X. F.; Yuan, Y. J.; Bai, W. F.; Wu, S. T.; Ji, Z. G.; Lu, C. H.; Zhang, K. et al. Energy manipulation in lanthanide-doped core-shell nanoparticles for tunable dual-mode luminescence toward advanced anti-counterfeiting. Adv. Mater. 2020, 32, 2002121.

31

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

32

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

33

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

34

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

35

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

36
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2021, in press, http://doi.org/10.1007/s12274-021-3794-0.https://doi.org/10.1007/s12274-021-3794-0
37

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

38

Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

39

Gao, C.; Low, J. X.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

40

Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

41

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

42

Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; Xiao, J. P.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972–981.

43

Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

44

Wang, D.; Zhao, C.; Gao, G. Y.; Xu, L. N.; Wang, G. F.; Zhu, P. F. Multifunctional NaLnF4@MOF-Ln nanocomposites with dual-mode luminescence for drug delivery and cell imaging. Nanomaterials 2019, 9, 1274.

45

Song, Y.; Shao, B. Q.; Feng, Y.; Lü, W.; Liu, G. X.; You, H. P. A novel strategy to enhance the luminescence performance of NaGdF4: Ln3+ nanocrystals. Dalton Trans. 2016, 45, 9468–9476.

46

Bouzas-Ramos, D.; Canga, J. C.; Mayo, J. C.; Sainz, R. M.; Encinar, J. R.; Costa-Fernandez, J. M. Carbon quantum dots codoped with nitrogen and lanthanides for multimodal imaging. Adv. Funct. Mater. 2019, 29, 1903884.

Nano Research
Pages 3594-3605
Cite this article:
Bao S, Yu H, Gao G, et al. Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs. Nano Research, 2022, 15(4): 3594-3605. https://doi.org/10.1007/s12274-021-3886-x
Topics:

876

Views

34

Crossref

33

Web of Science

36

Scopus

4

CSCD

Altmetrics

Received: 15 August 2021
Revised: 13 September 2021
Accepted: 14 September 2021
Published: 15 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return