AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High energy and insensitive explosives based on energetic porous aromatic frameworks

Jian Song1,§Yansong Shi1,§Yao Lu2Qinghai Shu1( )Yuyang Tian2( )Fengchao Cui2Xiaosong Duli1Xijuan Lv1Shaohua Jin1Guangshan Zhu2 ( )
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

Show Author Information

Graphical Abstract

Abstract

The design and synthesis of energetic materials with a compatibility of high energy and insensitivity have always been the research fronts in military and civilian fields. Considering excellent performances of porous organic frameworks and the lack of research in the field of energetic materials, in this study, a new concept named energetic porous aromatic frameworks (EPAFs) is proposed. The strategy of coating high energy explosives such as 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) in the EPAFs by wet-infiltration method has successfully realized the assembly of target energetic composite materials. The results show that the 75 wt.% CL-20@EPAF-1 possesses the safer impact sensitivity of 31.4 J than that of CL-20 (4.0 J). Notably, for 75 wt.% CL-20@EPAF-1, in addition to the superior detonation performances of the detonation velocity (8,761 m·s−1) and detonation pressure (31.27 GPa), the synergistic effect of the nitrogen-rich EPAFs and the nitramines high energy explosives results in a higher heat of detonation that surpasses the most of pristine high explosives and reported novel energetic materials. In prospect, energetic porous aromatic frameworks could be a promising and inspiring strategy to build high energy insensitive energetic materials.

Electronic Supplementary Material

Download File(s)
12274_2021_3888_MOESM1_ESM.pdf (1.2 MB)

References

1

O’Sullivan, O. T.; Zdilla, M. J. Properties and promise of catenated nitrogen systems as high-energy-density materials. Chem. Rev. 2020, 120, 5682–5744.

2

Yin, P.; Zhang, Q. Q.; Shreeve, J. M. Dancing with energetic nitrogen atoms: Versatile N-functionalization strategies for N-heterocyclic frameworks in high energy density materials. Acc. Chem. Res. 2016, 49, 4–16.

3

Ma, X. X.; Li, Y. X.; Hussain, I.; Shen, R. Q.; Yang, G. C.; Zhang, K. L. Core-shell structured nanoenergetic materials: Preparation and fundamental properties. Adv. Mater. 2020, 32, 2001291.

4

Chang, J. J.; Zhao, G.; Zhao, X. Y.; He, C. L.; Pang, S. P.; Shreeve, J. M. New promises from an old friend: Iodine-rich compounds as prospective energetic biocidal agents. Acc. Chem. Res. 2021, 54, 332–343.

5

Liu, Y. S.; Ouyang, S. X.; Guo, W. C.; Zong, H. H.; Cui, X. D.; Jin, Z.; Yang, G. C. Ultrafast one-step synthesis of N and Ti3+ codoped TiO2 nanosheets via energetic material deflagration. Nano Res. 2018, 11, 4735–4743.

6

Ma, J. C.; Chinnam, A. K.; Cheng, G. B.; Yang, H. W.; Zhang, J.; Shreeve, J. M. 1,3,4-Oxadiazole bridges: A strategy to improve energetics at the molecular level. Angew. Chem., Int. Ed. 2021, 60, 5497–5504.

7

Tang, Y. X.; Gao, H. X.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Enhancing energetic properties and sensitivity by incorporating amino and nitramino groups into a 1,2,4-oxadiazole building block. Angew. Chem., Int. Ed. 2016, 55, 1147–1150.

8

Wei, H.; He, C. L.; Zhang, J. H.; Shreeve, J. M. Combination of 1,2,4-oxadiazole and 1,2,5-oxadiazole moieties for the generation of high-performance energetic materials. Angew. Chem., Int. Ed. 2015, 54, 9367–9371.

9

Zhang, J. H.; Shreeve, J. M. 3,3′-Dinitroamino-4,4′-azoxyfurazan and its derivatives: An assembly of diverse N-O building blocks for high-performance energetic materials. J. Am. Chem. Soc. 2014, 136, 4437–4445.

10

Zhang, J. H.; Zhang, Q. H.; Vo, T. T.; Parrish, D. A.; Shreeve, J. M. Energetic salts with π-stacking and hydrogen-bonding interactions lead the way to future energetic materials. J. Am. Chem. Soc. 2015, 137, 1697–1704.

11

Zhang, J. H.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Enforced layer-by-layer stacking of energetic salts towards high-performance insensitive energetic materials. J. Am. Chem. Soc. 2015, 137, 10532–10535.

12

Tang, Y. X.; Huang, W.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Enforced planar FOX-7-like molecules: A strategy for thermally stable and insensitive π-conjugated energetic materials. J. Am. Chem. Soc. 2020, 142, 7153–7160.

13

Yin, P.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Energetic N-nitramino/N-oxyl-functionalized pyrazoles with versatile π-π stacking: Structure-property relationships of high-performance energetic materials. Angew. Chem., Int. Ed. 2016, 55, 14409–14411.

14

Barton, L. M.; Edwards, J. T.; Johnson, E. C.; Bukowski, E. J.; Sausa, R. C.; Byrd, E. F. C.; Orlicki, J. A.; Sabatini, J. J.; Baran, P. S. Impact of stereo- and regiochemistry on energetic materials. J. Am. Chem. Soc. 2019, 141, 12531–12535.

15

Yin, P.; Parrish, D. A.; Shreeve, J. M. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: Ternary hydrogen-bond induced high energy density materials. J. Am. Chem. Soc. 2015, 137, 4778–4786.

16

Bennion, J. C.; Matzger, A. J. Development and evolution of energetic cocrystals. Acc. Chem. Res. 2021, 54, 1699–1710.

17

Bolton, O.; Matzger, A. J. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem., Int. Ed. 2011, 50, 8960–8963.

18

Bellas, M. K.; Matzger, A. J. Achieving balanced energetics through cocrystallization. Angew. Chem., Int. Ed. 2019, 58, 17185–17188.

19

Titi, H. M.; Arhangelskis, M.; Rachiero, G. P.; Friščić, T.; Rogers, R. D. Hypergolic triggers as Co-crystal formers: Co-crystallization for creating new hypergolic materials with tunable energy content. Angew. Chem., Int. Ed. 2019, 58, 18399–18404.

20

Li, S. H.; Wang, Y.; Qi, C.; Zhao, X. X.; Zhang, J. C.; Zhang, S. W.; Pang, S. P. 3D energetic metal-organic frameworks: Synthesis and properties of high energy materials. Angew. Chem., Int. Ed. 2013, 52, 14031–14035.

21

Zhang, Q. H.; Shreeve, J. M. Metal-organic frameworks as high explosives: A new concept for energetic materials. Angew. Chem., Int. Ed. 2014, 53, 2540–2542.

22

Zhang, S.; Yang, Q.; Liu, X. Y.; Qu, X. N.; Wei, Q.; Xie, G.; Chen, S. P.; Gao, S. L. High-energy metal-organic frameworks (HE-MOFs): Synthesis, structure and energetic performance. Coord. Chem. Rev. 2016, 307, 292–312.

23

Sebastiao, E.; Cook, C.; Hu, A.; Murugesu, M. Recent developments in the field of energetic ionic Liquids. J. Mater. Chem. A 2014, 2, 8153–8173.

24

Eymann, J.; Joucla, L.; Jacob, G.; Raynaud, J.; Darwich, C.; Lacôte, E. Energetic nitrogen-rich polymers with a tetrazene-based backbone. Angew. Chem., Int. Ed. 2021, 60, 1578–1582.

25

Titi, H. M.; Marrett, J. M.; Dayaker, G.; Arhangelskis, M.; Mottillo, C.; Morris, A. J.; Rachiero, G. P.; Friščić, T.; Rogers, R. D. Hypergolic zeolitic imidazolate frameworks (ZIFs) as next-generation solid fuels: Unlocking the latent energetic behavior of ZIFs. Sci. Adv. 2019, 5, eaav9044.

26

Zhang, J. C.; Feng, Y. A.; Staples, R. J.; Zhang, J. H.; Shreeve, J. M. Taming nitroformate through encapsulation with nitrogen-rich hydrogen-bonded organic frameworks. Nat. Commun. 2021, 12, 2146.

27

Gao, H. X.; Joo, Y. H.; Twamley, B.; Zhou, Z. Q.; Shreeve, J. M. Hypergolic ionic liquids with the 2,2-dialkyltriazanium cation. Angew. Chem., Int. Ed. 2009, 48, 2792–2795.

28

Majano, G.; Mintova, S.; Bein, T.; Klapötke, T. M. High-density energetic material hosted in pure silica MFI-type zeolite nanocrystals. Adv. Mater. 2006, 18, 2440–2443.

29

Wang, S.; Wang, Q. Y.; Feng, X.; Wang, B.; Yang, L. Explosives in the cage: Metal-organic frameworks for high-energy materials sensing and desensitization. Adv. Mater. 2017, 29, 1701898.

30

McDonald, K. A.; Bennion, J. C.; Leone, A. K.; Matzger, A. J. Rendering non-energetic microporous coordination polymers explosive. Chem. Commun. 2016, 52, 10862–10865.

31

Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem., Int. Ed. 2009, 48, 9457–9460.

32

Tian, Y. Y.; Zhu, G. S. Porous aromatic frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986.

33

Yuan, Y.; Zhu, G. Porous aromatic frameworks as a platform for multifunctional applications. ACS Cent. Sci. 2019, 5, 409–418.

34

Uliana, A. A.; Bui, N. T.; Kamcev, J.; Taylor, M. K.; Urban, J. J.; Long, J. R. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 2021, 372, 296–299.

35

Van Humbeck, J. F.; McDonald, T. M.; Jing, X. F.; Wiers, B. M.; Zhu, G.; Long, J. R. Ammonia capture in porous organic polymers densely functionalized with brønsted acid groups. J. Am. Chem. Soc. 2014, 136, 2432–2440.

36

Tian, Y. Y.; Song, J.; Zhu, Y. L.; Zhao, H. Y.; Muhammad, F.; Ma, T. T.; Chen, M.; Zhu, G. S. Understanding the desulphurization process in an ionic porous aromatic framework. Chem. Sci. 2019, 10, 606–613.

37

Zhu, G. S. Reaction: Goal-oriented PAF design for uranium extraction from seawater. Chem 2021, 7, 277–278.

38

Zhang, P. P.; Zou, X. Q.; Song, J.; Tian, Y. Y.; Zhu, Y. L.; Yu, G. L.; Yuan, Y.; Zhu, G. S. Anion substitution in porous aromatic frameworks: Boosting molecular permeability and selectivity for membrane acetylene separation. Adv. Mater. 2020, 32, 1907449.

39

Zou, J. Y.; Trewin, A.; Ben, T.; Qiu, S. L. High uptake and fast transportation of LiPF6 in a porous aromatic framework for solid-state Li-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 769–774.

40

Ratsch, M.; Ye, C.; Yang, Y. Z.; Zhang, A. R.; Evans, A. M.; Börjesson, K. All-carbon-linked continuous three-dimensional porous aromatic framework films with nanometer-precise controllable thickness. J. Am. Chem. Soc. 2020, 142, 6548–6553.

41

Lee, J. S. M.; Sato, H. Photoswitching to the core. Nat. Chem. 2020, 12, 584–588.

42

Jiang, L. C.; Tian, Y. Y.; Sun, T.; Zhu, Y. L.; Ren, H.; Zou, X. Q.; Ma, Y. H.; Meihaus, K. R.; Long, J. R.; Zhu, G. S. A Crystalline polyimide porous organic framework for selective adsorption of acetylene over ethylene. J. Am. Chem. Soc. 2018, 140, 15724–15730.

43

Song, J.; Li, Y.; Cao, P.; Jing, X. F.; Faheem, M.; Matsuo, Y.; Zhu, Y. L.; Tian, Y. Y.; Wang, X. H.; Zhu, G. S. Synergic catalysts of polyoxometalate@cationic porous aromatic frameworks: Reciprocal modulation of both capture and conversion materials. Adv. Mater. 2019, 31, 1902444.

44

Chen, D.; Yang, H. W.; Yi, Z. X.; Xiong, H. L.; Zhang, L.; Zhu, S. G.; Cheng, G. B. C8N26H4: An environmentally friendly primary explosive with high heat of formation. Angew. Chem., Int. Ed. 2018, 57, 2081–2084.

45

Feng, Y. A.; Bi, Y. G.; Zhao, W. Y.; Zhang, T. L. Anionic metal-organic frameworks lead the way to eco-friendly high-energy-density materials. J. Mater. Chem. A 2016, 4, 7596–7600.

46

Klapötke, T. M.; Stierstorfer, J. The CN7 anion. J. Am. Chem. Soc. 2009, 131, 1122–1134.

47

Zhao, H. Y.; Jin, Z.; Su, H. M.; Zhang, J. L.; Yao, X. D.; Zhao, H. J.; Zhu, G. S. Target synthesis of a novel porous aromatic framework and its highly selective separation of CO2/CH4. Chem. Commun. 2013, 49, 2780–2782.

48

Dang, Q. Q.; Zhan, Y. F.; Wang, X. M.; Zhang, X. M. Heptazine-based porous framework for selective CO2 sorption and organocatalytic performances. ACS Appl. Mater. Interfaces 2015, 7, 28452–28458.

49

Borchardt L.; Kockrick E.; Wollmann P.; Kaskel S.; Guron, M. M.; Sneddon, L. G.; Geiger D. Ordered mesoporous boron carbide based materials via precursor nanocasting. Chem. Mater. 2010, 22, 4660–4668.

50

Yan, Q. L.; Yang, Z. J.; Zhang, X. X.; Lyu, J. Y.; He, W.; Huang, S.; Liu, P. J.; Zhang, C. Y.; Zhang, Q. H.; He, G. Q.; Nie, F. D. High density assembly of energetic molecules under the constraint of defected 2D materials. J. Mater. Chem. A 2019, 7, 17806–17814.

51

Song, Z. W.; Yan, Q. L.; Li, X. J.; Qi, X. F.; Liu, M. Crystal transition of ε-CL-20 in different solvent. Chin. J. Energ. Mater. 2010, 18, 648–653.

52

Qin, J. S.; Zhang, J. C.; Zhang, M.; Du, D. Y.; Li, J.; Su, Z. M.; Wang, Y. Y.; Pang, S. P.; Li, S. H.; Lan, Y. Q. A highly energetic N-rich zeolite-like metal-organic framework with excellent air stability and insensitivity. Adv. Sci. 2015, 2, 1500150.

53

Zhang, J. C.; Du, Y.; Dong, K.; Su, H.; Zhang, S. W.; Li, S. H.; Pang, S. P. Taming dinitramide anions within an energetic metal–organic framework: A new strategy for synthesis and tunable properties of high energy materials. Chem. Mater. 2016, 28, 1472–1480.

54

Zhang, M.; Li, C.; Gao, H. Q.; Fu, W.; Li, Y. Y.; Tang, L. W.; Zhou, Z. M. Promising hydrazinium 3-nitro-1,2,4-triazol-5-one and its analogs. J. Mater. Sci. 2016, 51, 10849–10862.

Nano Research
Pages 1698-1705
Cite this article:
Song J, Shi Y, Lu Y, et al. High energy and insensitive explosives based on energetic porous aromatic frameworks. Nano Research, 2022, 15(2): 1698-1705. https://doi.org/10.1007/s12274-021-3888-8
Topics:

741

Views

12

Crossref

10

Web of Science

11

Scopus

3

CSCD

Altmetrics

Received: 06 August 2021
Revised: 15 September 2021
Accepted: 15 September 2021
Published: 24 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return