AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method

Hui Ding1Xuan-Xuan Zhou1Zi-Hui Zhang1Yun-Peng Zhao1( )Ji-Shi Wei2Huan-Ming Xiong2( )
Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education and College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
Show Author Information

Graphical Abstract

A facile solvent-free approach to obtain photoluminescent carbon dots (CDs) with tunable emission from 442 to 621 nm, quantum yield of 23%–56%, and production yield within 34%–72% is reported. The resulting CDs can be potentially applied in the fabrication of fullcolor light emitting films and all types of white light emitting diodes (WLEDs) with high color-rendering-index (CRI) over 80.

Abstract

Full-color emissive carbon dots (CDs) hold a great promise for various applications, especially in light emitting diodes (LEDs). However, the existing synthetic routes for CDs are carried out in solutions, which suffer from low yields, high pressures, various byproducts, large amounts of waste solvents, and complicated photoluminescence (PL) origins. Therefore, it is necessary to explore large scale synthesis of CDs with high quantum yield (QY) across the entire visible range from a single carbon source by a solvent-free method. In this work, a series of CDs with tunable PL emission from 442 to 621 nm, QY of 23%–56%, and production yield within 34%–72%, are obtained by heating o-phenylenediamine with the catalysis of KCl. Detailed characterizations identify that, the differences between these CDs with respect to the graphitization degree, graphitic nitrogen content, and oxygen-containing functional groups, are responsible for their distinct optical properties, which can be modulated by controlling the deamination and dehydrogenation processes during reactions. Blue, green, yellow, red emissive films, and LEDs are prepared by dispersing the corresponding CDs into polyvinyl alcohol (PVA). All types of white LEDs (WLEDs) with high color-rendering-index (CRI), including warm WLEDs, standard WLEDs, and cool WLEDs, are also fabricated by mixing the red, green, and blue emissive CDs into PVA matrix by the appropriate ratios.

Electronic Supplementary Material

Download File(s)
12274_2021_3891_MOESM1_ESM.pdf (1.3 MB)

References

1

Ding, H.; Zhou, X. X.; Wei, J. S.; Li, X. B.; Qin, B. T.; Chen, X. B.; Xiong, H. M. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon 2020, 167, 322–344.

2

Liu, J. J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179–2195.

3

Nguyen, H. A.; Srivastava, I.; Pan, D.; Gruebele, M. Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution. ACS Nano 2020, 14, 6127–6137.

4

Liu, J. J.; Geng, Y. J.; Li, D. W.; Yao, H.; Huo, Z. P.; Li, Y. F.; Zhang, K.; Zhu, S. J.; Wei, H. T.; Xu, W. Q. et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv. Mater. 2020, 32, 1906641.

5

Shi, X. X.; Meng, H. M.; Sun, Y. Q.; Qu, L. B.; Lin, Y. H.; Li, Z. H.; Du, D. Far-red to near-infrared carbon dots: Preparation and applications in biotechnology. Small 2019, 15, 1901507.

6

Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.

7

Qu, D.; Sun, Z. C. The formation mechanism and fluorophores of carbon dots synthesized via a bottom-up route. Mater. Chem. Front. 2020, 4, 400–420.

8

Zhu, Z. J.; Zhai, Y. L.; Li, Z. H.; Zhu, P. Y.; Mao, S.; Zhu, C. Z.; Du, D.; Belfiore, L. A.; Tang, J. G.; Lin, Y. H. Red carbon dots: Optical property regulations and applications. Mater. Today 2019, 30, 52–79.

9

Gao, D.; Zhao, H.; Chen, X.; Fan, H. Recent advance in red-emissive carbon dots and their photoluminescent mechanisms. Mater. Today Chem. 2018, 9, 103–113.

10

Liu, Y. H.; Huang, H.; Cao, W. J.; Mao, B. D.; Liu, Y.; Kang, Z. H. Advances in carbon dots: From the perspective of traditional quantum dots. Mater. Chem. Front. 2020, 4, 1586–1613.

11

Xu, D.; Lin, Q. L.; Chang, H. T. Recent advances and sensing applications of carbon dots. Small Methods 2020, 4, 1900387.

12

Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471.

13

Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019, 6, 1900766.

14

Wei, J. Y.; Lou, Q.; Zang, J. H.; Liu, Z. Y.; Ye, Y. L.; Shen, C. L.; Zhao, W. B.; Dong, L.; Shan, C. X. Scalable synthesis of green fluorescent carbon dot powders with unprecedented efficiency. Adv. Opt. Mat. 2020, 8, 1901938.

15

Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

16

Zhu, Z. J.; Cheng, R.; Ling, L. T.; Li, Q.; Chen, S. Rapid and large-scale production of multi-fluorescence carbon dots by a magnetic hyperthermia method. Angew. Chem., Int. Ed. 2020, 59, 3099–3105.

17

Soni, N.; Singh, S.; Sharma, S.; Batra, G.; Kaushik, K.; Rao, C.; Verma, N. C.; Mondal, B.; Yadav, A.; Nandi, C. K. Absorption and emission of light in red emissive carbon nanodots. Chem. Sci. 2021, 12, 3615–3626.

18

Essner, J. B.; Kist, J. A.; Polo-Parada, L.; Baker, G. A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 2018, 30, 1878–1887.

19

Wei, S. Q.; Yin, X. H.; Li, H. Y.; Du, X. Y.; Zhang, L. M.; Yang, Q.; Yang, R. Multi-color fluorescent carbon dots: Graphitized sp2 conjugated domains and surface state energy level co-modulate band gap rather than size effects. Chem.—Eur. J. 2020, 26, 8129–8136.

20

Liu, H. J.; Lv, X. T.; Li, C. W.; Qian, Y.; Wang, X. Y.; Hu, L.; Wang, Y. C.; Lin, W. C.; Wang, H. Direct carbonization of organic solvents toward graphene quantum dots. Nanoscale 2020, 12, 10956–10963.

21

Wang, L.; Li, W. T.; Yin, L. Q.; Liu, Y. J.; Guo, H. Z.; Lai, J. W.; Han, Y.; Li, G.; Li, M.; Zhang, J. H. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772.

22

Wang, B. Y.; Yu, J. K.; Sui, L. Z.; Zhu, S. J.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 2020, 8, 2001453.

23

Li, F.; Yang, D. Y.; Xu, H. P. Non-metal-heteroatom-doped carbon dots: Synthesis and properties. Chem.—Eur. J. 2019, 25, 1165–1176.

24

Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

25

Zhou, J.; Yang, Y.; Zhang, C. Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem. Commun. 2013, 49, 8605–8607.

26

Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

27

Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

28

Lyu, B. W.; Li, H. J.; Xue, F. F.; Sai, L. M.; Gui, B. J.; Qian, D. J.; Wang, X. Y.; Yang, J. H. Facile, gram-scale and eco-friendly synthesis of multi-color graphene quantum dots by thermal-driven advanced oxidation process. Chem. Eng. J. 2020, 388, 124285.

29

Sun, M. H.; Liang, C.; Tian, Z.; Ushakova, E. V.; Li, D.; Xing, G. C.; Qu, S. N.; Rogach, A. L. Realization of the photostable intrinsic core emission from carbon dots through surface deoxidation by ultraviolet irradiation. J. Phys. Chem. Lett. 2019, 10, 3094–3100.

30

He, P.; Shi, Y. X.; Meng, T.; Yuan, T.; Li, Y. C.; Li, X. H.; Zhang, Y.; Fan, L. Z.; Yang, S. H. Recent advances in white light-emitting diodes of carbon quantum dots. Nanoscale 2020, 12, 4826–4832.

31

Zhang, Y. J.; Yuan, R. R.; He, M. L.; Hu, G. C.; Jiang, J. T.; Xu, T.; Zhou, L.; Chen, W.; Xiang, W. D.; Liang, X. J. Multicolour nitrogen-doped carbon dots: Tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale 2017, 9, 17849–17858.

32

Jing, P. T.; Han, D.; Li, D.; Zhou, D.; Shen, D. Z.; Xiao, G. J.; Zou, B.; Qu, S. N. Surface related intrinsic luminescence from carbon nanodots: Solvent dependent piezochromism. Nanoscale Horiz. 2019, 4, 175–181.

33

Ding, H.; Wei, J. S.; Zhang, P.; Zhou, Z. Y.; Gao, Q. Y.; Xiong, H. M. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 2018, 14, 1800612.

34

Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.

35

Anwar, S.; Ding, H. Z.; Xu, M. S.; Hu, X. L.; Li, Z. Z.; Wang, J. M.; Liu, L.; Jiang, L.; Wang, D.; Dong, C. et al. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl. Bio Mater. 2019, 2, 2317–2338.

36

Jia, H. R.; Wang, Z. B.; Yuan, T.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots. Adv. Sci. 2019, 6, 1900397.

37

Li, H. X.; Su, D. D.; Gao, H.; Yan, X.; Kong, D. S.; Jin, R.; Liu, X. M.; Wang, C. G.; Lu, G. Y. Design of red emissive carbon dots: Robust performance for analytical applications in pesticide monitoring. Anal. Chem. 2020, 92, 3198–3205.

38

Wang, B. Y.; Li, J.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Near-infrared emissive carbon dots with 33. 96% emission in aqueous solution for cellular sensing and light-emitting diodes. Sci. Bull. 2019, 64, 1285–1292.

39

Li, D.; Liang, C.; Ushakova, E. V.; Sun, M. H.; Huang, X. D.; Zhang, X. Y.; Jing, P. T.; Yoo, S. J.; Kim, J. G.; Liu, E. S. et al. Thermally activated upconversion near-infrared photoluminescence from carbon dots synthesized via microwave assisted exfoliation. Small 2019, 15, 1905050.

40

Wang, P.; Liu, C.; Tang, W. Q.; Ren, S. X.; Chen, Z. J.; Guo, Y. R.; Rostamian, R.; Zhao, S. L.; Li, J.; Liu, S. X. et al. Molecular glue strategy: Large-scale conversion of clustering-induced emission luminogen to carbon dots. ACS Appl. Mater. Interfaces 2019, 11, 19301–19307.

41

Tian, Z.; Zhang, X. T.; Li, D.; Zhou, D.; Jing, P. T.; Shen, D. Z.; Qu, S. N.; Zboril, R.; Rogach, A. L. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Opt. Mat. 2017, 5, 1700416.

42

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

43

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

44

Li, Z. Y.; Wang, L.; Li, Y.; Feng, Y. Y.; Feng, W. Frontiers in carbon dots: Design, properties and applications. Mater. Chem. Front. 2019, 3, 2571–2601.

45

Tao, S. Y.; Zhu, S. J.; Feng, T. L.; Xia, C. L.; Song, Y. B.; Yang, B. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Mater. Today Chem. 2017, 6, 13–25.

46

Chen, S. W.; Ullah, N.; Wang, T. Q.; Zhang, R. Q. Tuning the optical properties of graphene quantum dots by selective oxidation: A theoretical perspective. J. Mater. Chem. C 2018, 6, 6875–6883.

47

Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.

48

Zhang, X. Q.; Yang, H. Y.; Wan, Z. J.; Su, T.; Zhang, X. J.; Zhuang, J. L.; Lei, B. F.; Liu, Y. L.; Hu, C. F. Self-quenching-resistant red emissive carbon dots with high stability for warm white light-emitting diodes with a high color rendering index. Adv. Opt. Mat. 2020, 8, 2000251.

49

Qu, D.; Yang, D. X.; Sun, Y. K.; Wang, X. Y.; Sun, Z. C. White emissive carbon dots actuated by the H-/J-aggregates and Forster resonance energy transfer. J. Phys. Chem. Lett. 2019, 10, 3849–3857.

50

Yuan, T.; Meng, T.; He, P.; Shi, Y. X.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Yang, S. H. Carbon quantum dots: An emerging material for optoelectronic applications. J. Mater. Chem. C 2019, 7, 6820–6835.

Nano Research
Pages 3548-3555
Cite this article:
Ding H, Zhou X-X, Zhang Z-H, et al. Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. Nano Research, 2022, 15(4): 3548-3555. https://doi.org/10.1007/s12274-021-3891-0
Topics:

1202

Views

90

Crossref

78

Web of Science

85

Scopus

3

CSCD

Altmetrics

Received: 05 July 2021
Revised: 11 September 2021
Accepted: 15 September 2021
Published: 15 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return