Graphical Abstract

The etiology of chronic kidney disease (CKD) is complex and diverse, which could be briefly categorized to glomerular- or tubular- originated. However, the final outcomes of CKD are mainly glomerular sclerosis, endothelial dysfunction and injury, and chronic inflammation. Thus, targeted delivery of drugs to the glomeruli in order to ameliorate glomerular endothelial damage may help alleviate CKD and help enrich our knowledge. The herb tripterygium wilfordii shows therapeutic effect on kidney disease, and celastrol (CLT) is one of its active ingredients but with strong toxicity. Therefore, based on the unique structure and pathological characteristics of the glomerulus, we designed a targeted delivery system named peptides coupled CLT-phospholipid lipid nanoparticles (PC-PLNs) to efficiently deliver CLT to damaged endothelial cells and podocytes in the glomerulus for CKD treatment and research. PC-PLNs could effectively inhibit inflammation, reduce endothelial damage, alleviate CKD severity, and reduce the toxicity of CLT. We also studied the mechanism of CLT in the treatment of nephropathy and found that CLT can increase the level of NO by increasing eNOS while inhibiting the expression of VCAM-1, thus provides an anti-inflammatory effect. Therefore, our study not only offered an efficient CKD drug formulation for further development, but also provided new medical knowledge about CKD.
Lal, M. A.; Young, K. W.; Andag, U. Targeting the podocyte to treat glomerular kidney disease. Drug Discov. Today 2015, 20, 1228–1234.
Liu, C. P.; Hu, Y.; Lin, J. C.; Fu, H. L.; Lim, L. Y.; Yuan, Z. X. Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Med. Res. Rev. 2019, 39, 561–578.
Cascão, R.; Vidal, B.; Lopes, I. P.; Paisana, E.; Rino, J.; Moita, L. F.; Fonseca, J. E. Decrease of CD68 synovial macrophages in celastrol treated arthritic rats. PLoS One 2015, 10, e0142448.
Liu, J. L.; Lee, J.; Hernandez, M. A. S.; Mazitschek, R.; Ozcan, U. Treatment of obesity with celastrol. Cell 2015, 161, 999–1011.
Venkatesha, S. H.; Dudics, S.; Astry, B.; Moudgil, K. D. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog. Dis. 2016, 74, ftw059.
Xie, G. S.; Zhu, L.; Song, Y. Y.; Huang, W.; Hu, D.; Cai, Z. W. An integrated quantitative proteomics strategy reveals the dual mechanisms of celastrol against acute inflammation. Chin. Chem. Lett. 2021, 32, 2164–2168.
Cascão, R.; Fonseca, J. E.; Moita, L. F. Celastrol: A spectrum of treatment opportunities in chronic diseases. Front. Med. 2017, 4, 69.
Gao, Y. F.; Zhou, S.; Pang, L. Z.; Yang, J. C.; Li, H. J.; Huo, X. W.; Qian, S. Y. Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer. Free Radic. Res. 2019, 53, 324–334.
Sha, M.; Ye, J.; Zhang, L.; Luan, Z.; Chen, Y.; Huang, J. Celastrol induces apoptosis of gastric cancer cells by miR-21 inhibiting PI3K/Akt-NF-κB signaling pathway. Pharmacology 2014, 93, 39–46.
Venkatesha, S. H.; Moudgil, K. D. Celastrol and its role in controlling chronic diseases. Adv. Exp. Med. Biol. 2016, 928, 267–289.
Guo, L.; Luo, S.; Du, Z. W.; Zhou, M. L.; Li, P. W.; Fu, Y.; Sun, X.; Huang, Y.; Zhang, Z. R. Targeted delivery of celastrol to mesangial cells is effective against mesangioproliferative glomerulonephritis. Nat. Commun. 2017, 8, 878.
Kim, J. E.; Lee, M. H.; Nam, D. H.; Song, H. K.; Kang, Y. S.; Lee, J. E.; Kim, H. W.; Cha, J. J.; Hyun, Y. Y.; Han, S. Y. et al. Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS One 2013, 8, e62068.
Li, R.; Li, Y. P.; Zhang, J. H.; Liu, Q. H.; Wu, T.; Zhou, J.; Huang, H.; Tang, Q.; Huang, C. Y.; Huang, Y. et al. Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity. J. Control. Release 2020, 320, 32–44.
Xu, S. H.; Feng, Y. Q.; He, W. S.; Xu, W.; Xu, W.; Yang, H. J.; Li, X. Y. Celastrol in metabolic diseases: Progress and application prospects. Pharmacol. Res. 2021, 167, 105572.
Zhao, Y.; Tan, Y. N.; Meng, T. T.; Liu, X.; Zhu, Y.; Hong, Y.; Yang, X. Q.; Yuan, H.; Huang, X.; Hu, F. Q. Simultaneous targeting therapy for lung metastasis and breast tumor by blocking the NF-κB signaling pathway using celastrol-loaded micelles. Drug Deliv. 2018, 25, 341–352.
Zhou, L. L.; Lin, Z. X.; Fung, K. P.; Cheng, C. H. K.; Che, C. T.; Zhao, M.; Wu, S. H.; Zuo, Z. Celastrol-induced apoptosis in human HaCaT keratinocytes involves the inhibition of NF-κB activity. Eur. J. Pharmacol. 2011, 670, 399–408.
Li, L.; Liao, J. L.; Yuan, Q.; Hong, X.; Li, J.; Peng, Y. L.; He, M. Z.; Zhu, H. L.; Zhu, M. S.; Hou, F. F. et al. Fibrillin-1-enriched microenvironment drives endothelial injury and vascular rarefaction in chronic kidney disease. Sci. Adv. 2021, 7, eabc7170.
Sharp, C. N.; Doll, M. A.; Megyesi, J.; Oropilla, G. B.; Beverly, L. J.; Siskind, L. J. Subclinical kidney injury induced by repeated cisplatin administration results in progressive chronic kidney disease. Am. J. Physiol. Renal Physiol. 2018, 315, F161–F172.
Jourde-Chiche, N.; Fakhouri, F.; Dou, L.; Bellien, J.; Burtey, S.; Frimat, M.; Jarrot, P. A.; Kaplanski, G.; Le Quintrec, M.; Pernin, V. et al. Endothelium structure and function in kidney health and disease. Nat. Rev. Nephrol. 2019, 15, 87–108.
Kitching, A. R.; Hutton, H. L. The players: Cells involved in glomerular disease. Clin. J. Am. Soc. Nephrol. 2016, 11, 1664–1674.
Ma, Y. H.; Cai, F. H.; Li, Y. Y.; Chen, J. H.; Han, F.; Lin, W. Q. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Bioact. Mater. 2020, 5, 732–743.
Wang, Y. F.; Wu, Q. S.; Wang, J. D.; Li, L.; Sun, X.; Zhang, Z. R.; Zhang, L. Co-delivery of p38α MAPK and p65 siRNA by novel liposomal glomerulus-targeting nano carriers for effective immunoglobulin a nephropathy treatment. J. Control. Release 2020, 320, 457–468.
Xu, C.; Chang, A.; Hack, B. K.; Eadon, M. T.; Alper, S. L.; Cunningham, P. N. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int. 2014, 85, 72–81.
Wang, G. W.; Li, Q. Y.; Chen, D. F.; Wu, B. H.; Wu, Y. L.; Tong, W. J.; Huang, P. T. Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy therapy via size control and enhancement of renal cellular uptake. Theranostics 2019, 9, 6191–6208.
Assady, S.; Wanner, N.; Skorecki, K. L.; Huber, T. B. New insights into podocyte biology in glomerular health and disease. J. Am. Soc. Nephrol. 2017, 28, 1707–1715.
Lu, C. C.; Wang, G. H.; Lu, J.; Chen, P. P.; Zhang, Y.; Hu, Z. B.; Ma, K. L. Role of podocyte injury in glomerulosclerosis. Adv. Exp. Med. Biol. 2019, 1165, 195–232.
Visweswaran, G. R. R.; Gholizadeh, S.; Ruiters, M. H. J.; Molema, G.; Kok, R. J.; Kamps, J. A. A. M. Targeting rapamycin to podocytes using a vascular cell adhesion molecule-1 (VCAM-1)-harnessed SAINT-based lipid carrier system. PLoS One 2015, 10, e0138870.
Sol, M.; Kamps, J. A. A. M.; van den Born, J.; van den Heuvel, M. C.; van der Vlag, J.; Krenning, G.; Hillebrands, J. L. Glomerular endothelial cells as instigators of glomerular sclerotic diseases. Front. Pharmacol. 2020, 11, 573557.
Wu, X. Y.; Guo, R. Q.; Chen, P. L.; Wang, Q.; Cunningham, P. N. TNF induces caspase-dependent inflammation in renal endothelial cells through a Rho- and myosin light chain kinase-dependent mechanism. Am. J. Physiol. Renal Physiol. 2009, 297, F316–F326.
Ailuno, G.; Baldassari, S.; Zuccari, G.; Schlich, M.; Caviglioli, G. Peptide-based nanosystems for vascular cell adhesion molecule-1 targeting: A real opportunity for therapeutic and diagnostic agents in inflammation associated disorders. J. Drug Deliv. Sci. Technol. 2020, 55, 101461.
Zhong, F.; Mallipattu, S. K.; Estrada, C.; Menon, M.; Salem, F.; Jain, M. K.; Chen, H. Y.; Wang, Y. J.; Lee, K.; He, J. C. Reduced krüppel-like factor 2 aggravates glomerular endothelial cell injury and kidney disease in mice with unilateral nephrectomy. Am. J. Pathol. 2016, 186, 2021–2031.
Liu, D.; Huang, Y.; Chen, B. J.; Zeng, J.; Guo, N.; Zhang, S. F.; Liu, L. X.; Xu, H.; Mo, X. M.; Li, W. M. Activation of mammalian target of rapamycin pathway confers adverse outcome in nonsmall cell lung carcinoma. Cancer 2011, 117, 3763–3773.
He, C. B.; Hu, Y. P.; Yin, L. C.; Tang, C.; Yin, C. H. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666.
Levchenko, T. S.; Rammohan, R.; Lukyanov, A. N.; Whiteman, K. R.; Torchilin, V. P. Liposome clearance in mice: The effect of a separate and combined presence of surface charge and polymer coating. Int. J. Pharm. 2002, 240, 95–102.
Chen, D. F.; Han, S. P.; Zhu, Y. Q.; Hu, F.; Wei, Y. H.; Wang, G. W. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethyleneimine nanoparticles for diabetic nephropathy therapy. Int. J. Nanomed. 2018, 13, 3507–3527.
Haque, S.; Pouton, C. W.; McIntosh, M. P.; Ascher, D. B.; Keizer, D. W.; Whittaker, M. R.; Kaminskas, L. M. The impact of size and charge on the pulmonary pharmacokinetics and immunological response of the lungs to PLGA nanoparticles after intratracheal administration to rats. Nanomed. :Nanotechnol., Biol. Med. 2020, 30, 102291.
Kong, D. H.; Kim, Y. K.; Kim, M. R.; Jang, J. H.; Lee, S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int. J. Mol. Sci. 2018, 19, 1057.
Li, R. R.; Kowalski, P. S.; Morselt, H. W. M.; Schepel, I.; Jongman, R. M.; Aslan, A.; Ruiters, M. H. J.; Zijlstra, J. G.; Molema, G.; van Meurs, M. et al. Endothelium-targeted delivery of dexamethasone by anti-VCAM-1 SAINT-O-Somes in mouse endotoxemia. PLoS One 2018, 13, e0196976.
Calin, M.; Stan, D.; Schlesinger, M.; Simion, V.; Deleanu, M.; Constantinescu, C. A.; Gan, A. M.; Pirvulescu, M. M.; Butoi, E.; Manduteanu, I. et al. VCAM-1 directed target-sensitive liposomes carrying CCR2 antagonists bind to activated endothelium and reduce adhesion and transmigration of monocytes. Eur. J. Pharm. Biopharm. 2015, 89, 18–29.
Kelly, K. A.; Nahrendorf, M.; Yu, A. M.; Reynolds, F.; Weissleder, R. In vivo phage display selection yields atherosclerotic plaque targeted peptides for imaging. Mol. Imaging Biol. 2006, 8, 201.
Tousoulis, D.; Kampoli, A. M.; Papageorgiou, C. T. N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18.
Verma, S. K.; Molitoris, B. A. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin. Nephrol. 2015, 35, 96–107.
Whiting, C.; Castillo, A.; Haque, M. Z.; Majid, D. S. A. Protective role of the endothelial isoform of nitric oxide synthase in ANG II-induced inflammatory responses in the kidney. Am. J. Physiol. Renal Physiol. 2013, 305, F1031–F1041.
Adler, S.; Huang, H.; Loke, K. E.; Xu, X. B.; Tada, H.; Laumas, A.; Hintze, T. H. Endothelial nitric oxide synthase plays an essential role in regulation of renal oxygen consumption by NO. Am. J. Physiol. Renal Physiol. 2001, 280, F838–F843.
Baylis, C. Nitric oxide deficiency in chronic kidney disease. Am. J. Physiol. Renal Physiol. 2008, 294, F1–F9.
Coleman, J. W. Nitric oxide: A regulator of mast cell activation and mast cell-mediated inflammation. Clin. Exp. Immunol. 2002, 129, 4–10.
Dolinina, J.; Sverrisson, K.; Rippe, A.; Öberg, C. M.; Rippe, B. Nitric oxide synthase inhibition causes acute increases in glomerular permeability in vivo, dependent upon reactive oxygen species. Am. J. Physiol. Renal Physiol. 2016, 311, F984–F990.
Fiore, M. C.; Jimenez, P. M.; Cremonezzi, D.; Juncos, L. I.; García, N. H. Statins reverse renal inflammation and endothelial dysfunction induced by chronic high salt intake. Am. J. Physiol. Renal Physiol. 2011, 301, F263–F270.
Liu, B.; Xu, L. L.; Yu, X. M.; Li, W.; Sun, X. Z.; Xiao, S.; Guo, M. J.; Wang, H. F. Protective effect of KLF15 on vascular endothelial dysfunction induced by TNF-α. Mol. Med. Rep. 2018, 18, 1987–1994.
Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial dysfunction in chronic kidney disease, from biology to clinical outcomes: A 2020 update. J. Clin. Med. 2020, 9, 2359.
Guo, Y. M.; Li, P. F.; Gao, L.; Zhang, J. M.; Yang, Z. R.; Bledsoe, G.; Chang, E.; Chao, L.; Chao, J. L. Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway. Aging Cell 2017, 16, 837–846.
Kim, J.; Lee, K. S.; Kim, J. H.; Lee, D. K.; Park, M.; Choi, S.; Park, W.; Kim, S.; Choi, Y. K.; Hwang, J. Y. et al. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: Role of a miR-155/eNOS axis in preeclampsia. Free Radic. Biol. Med. 2017, 104, 185–198.
Valerio, A.; Cardile, A.; Cozzi, V.; Bracale, R.; Tedesco, L.; Pisconti, A.; Palomba, L.; Cantoni, O.; Clementi, E.; Moncada, S. et al. TNF-α downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J. Clin. Invest. 2006, 116, 2791–2798.
Choi, S.; Kim, J.; Kim, J. H.; Lee, D. K.; Park, W.; Park, M.; Kim, S.; Hwang, J. Y.; Won, M. H.; Choi, Y. K. et al. Carbon monoxide prevents TNF-α-induced eNOS downregulation by inhibiting NF-κB-responsive miR-155-5p biogenesis. Exp. Mol. Med. 2017, 49, e403.
Zhang, J. D.; Patel, M. B.; Griffiths, R.; Mao, A.; Song, Y. S.; Karlovich, N. S.; Sparks, M. A.; Jin, H. X.; Wu, M.; Lin, E. E. et al. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension 2014, 64, 1275–1281.
Liu, X.; Gao, R. W.; Li, M.; Si, C. F.; He, Y. P.; Wang, M.; Yang, Y.; Zheng, Q. Y.; Wang, C. Y. The ROS derived mitochondrial respirstion not from NADPH oxidase plays key role in celastrol against angiotensin II-mediated HepG2 cell proliferation. Apoptosis 2016, 21, 1315–1326.
Matavelli, L. C.; Huang, J. Q.; Siragy, H. M. Angiotensin AT2 receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertension 2011, 57, 308–313.
Pandey, A.; Goru, S. K.; Kadakol, A.; Malek, V.; Gaikwad, A. B. Differential regulation of angiotensin converting enzyme 2 and nuclear factor-κB by angiotensin II receptor subtypes in type 2 diabetic kidney. Biochimie 2015, 118, 71–81.
Kruse, N. T. Nutraceuticals as a potential adjunct therapy toward improving vascular health in CKD. Am. J. Physiol. Regul., Integr. Comp. Physiol. 2019, 317, R719–R732.
Pushpakumar, S.; Kundu, S.; Sen, U. Hydrogen sulfide protects hyperhomocysteinemia-induced renal damage by modulation of caveolin and eNOS interaction. Sci. Rep. 2019, 9, 2223.