AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions

Min Ling1,§Na Li1,§Binbin Jiang3,§Renyong Tu4Tao Wu1Pingli Guan1Yin Ye1Weng-Chon (Max) Cheong4,5Kaian Sun4Shoujie Liu6Konglin Wu1,2( )Aijian Huang4,7( )Xianwen Wei1,2( )
College of Chemistry and Materials Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Normal University, Wuhu 241002, China
School of Chemistry and Chemical Engineering, Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan 243002, China
School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anqing Normal University, Anqing 246011, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao, China
Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou 515063, China
School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

§Min Ling, Na Li, and Binbin Jiang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

In the field of electrolysis of water, the design and synthesis of catalysts over a wide pH range have attracted extensive attentions. In this paper, Co and N are co-introduced into the structural unit of tungsten disulfide (WS2), and the hydrogen evolution reaction (HER) performances of different WS2-based catalysts are theoretically predicted and systematically studied by density functional theory (DFT) calculations. With the guidance of DFT calculations, an evaporation-pyrolysis strategy is applied to prepare Co and N co-doped WS2 (Co,N-WS2) flower-like nanosheets, which exhibits excellent HER performance over a wide pH range. In addition, the DFT calculations show that the active sites in Co,N-WS2 have a good ability of hydrogen adsorption after the introduction of Co and N, suggesting that such a co-doping system will be an ideal catalyst for oxidative dehydrogenation (ODH). The following experiment results indeed evidence that the Co,N-WS2 catalyst displays a high activity in the ODH of 1,2,3,4-tetrahydroquinoline (4H-quinoline) and its derivatives. Therefore, this work provides a good example for the rational design and accurate preparation of functional catalysts, which enables it possible to develop other efficient catalysts with multiple functions.

References

1

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

2

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

3

Pan, Y.; Zhang, C.; Lin, Y.; Liu, Z.; Wang, M. M.; Chen, C. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921–948.

4

Wu, K. L.; Sun, K. A.; Liu, S. J.; Cheong, W. C.; Chen, Z.; Zhang, C.; Pan, Y.; Cheng, Y. S.; Zhuang, Z. W.; Wei, X. W. et al. Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 2021, 80, 105467.

5

Wang, J.; Fang, W. H.; Hu, Y.; Zhang, Y. H.; Dang, J. Q.; Wu, Y.; Chen, B. Z.; Zhao, H.; Li, Z. X. Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Appl. Catal. B Environ. 2021, 298, 120490.

6

Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439–2450.

7

Zhang, S. Y.; Hill, H. M.; Moudgil, K.; Richter, C. A.; Walker, A. R. H.; Barlow, S.; Marder, S. R.; Hacker, C. A.; Pookpanratana, S. J. Controllable, wide-ranging n-doping and p-doping of monolayer group 6 transition-metal disulfides and diselenides. Adv. Mater. 2018, 30, 1802991.

8

Wang, J. J.; Zhang, Z.; Ding, J.; Zhong, C.; Deng, Y. D.; Han, X. P.; Hu, W. B. Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies. Sci. China Mater. 2021, 64, 1–26.

9

Meerbach, C.; Klemmed, B.; Spittel, D.; Bauer, C.; Park, Y. J.; Hübner, R.; Jeong, H. Y.; Erb, D.; Shin, H. S.; Lesnyak, V. et al. General colloidal synthesis of transition-metal disulfide nanomaterials as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 13148–13155.

10

Choi, S.; Kwon, K. C.; Kim, S. Y.; Jang, H. W. Tailoring catalytic activities of transition metal disulfides for water splitting. FlatChem 2017, 4, 68–80.

11
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, https//doi: 10.1007/s12274-021-3794-0.https://doi.org/10.1007/s12274-021-3794-0
12

Zhu, J. N.; Zeng, Q. F.; Yan, C.; He, W. J. WS2 nanopowders as high-temperature lubricants: An experimental and theoretical study. ACS Appl. Nano Mater. 2019, 2, 5604–5613.

13

Zeng, X. H.; Ding, Z. P.; Ma, C.; Wu, L. D.; Liu, J. T.; Chen, L. B.; Ivey, D. G.; Wei, W. F. Hierarchical nanocomposite of hollow N-doped carbon spheres decorated with ultrathin WS2 nanosheets for high-performance lithium-ion battery anode. ACS Appl. Mater. Interfaces 2016, 8, 18841–18848.

14
Cui, Y.; Guo, X. Y.; Zhang, J.; Li, X. A.; Zhu, X. B.; Huang, W. Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Res., in press, https://doi: 10.1007/s12274-021-3545-2.https://doi.org/10.1007/s12274-021-3545-2
15

Ma, L. Y.; Kong, W. H.; Liu, M. L.; Jin, Z. Y.; Han, Y. Q.; Sun, J.; Liu, J.; Xu, Y. H.; Li, J. H. Sulfur defect-rich WS2−x nanosheet electrocatalysts for N2 reduction. Sci. China Mater. 2021, 64, 1910–1918.

16

Carrascoso, F.; Li, H.; Frisenda, R.; Castellanos-Gomez, A. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Res. 2021, 14, 1698–1703.

17

Chen, Y.; Jiang, Y.; Yi, C.; Liu, H. W.; Chen, S. L.; Sun, X. X.; Ma, C.; Li, D.; He, C. L.; Luo, Z. Y. et al. Efficient control of emission and carrier polarity in WS2 monolayer by indium doping. Sci. China Mater. 2021, 64, 1449–1456.

18

Cheng, L.; Yuan, C.; Shen, S. D.; Yi, X.; Gong, H.; Yang, K.; Liu, Z. Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics. ACS Nano 2015, 9, 11090–11101.

19

Singh, N.; Schwingenschlögl, U. Extended moment formation in monolayer WS2 doped with 3d transition-metals. ACS Appl. Mater. Interfaces 2016, 8, 23886–23890.

20

Sun, C. Q.; Zhang, J. Y.; Ma, J.; Liu, P. T.; Gao, D. Q.; Tao, K.; Xue, D. S. N-doped WS2 nanosheets: A high-performance electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 11234–11238.

21

Shi, X. J.; Fields, M.; Park, J.; McEnaney, J. M.; Yan, H. P.; Zhang, Y. R.; Tsai, C.; Jaramillo, T. F.; Sinclair, R.; Nørskov, J. K. et al. Rapid flame doping of Co to WS2 for efficient hydrogen evolution. Energy Environ. Sci. 2018, 11, 2270–2277.

22

Zhao, X.; Li, X. Y.; Xiao, D. D.; Gong, M. X.; An, L. L.; Gao, P. F.; Yang, J. L.; Wang, D. L. Isolated Pd atom anchoring endows cobalt diselenides with regulated water-reduction kinetics for alkaline hydrogen evolution. Appl. Catal. B Environ. 2021, 295, 120280.

23

Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; De Groot, F. M. F.; Tan, Y. W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

24

Yao, Y. C.; Gu, X. K.; He, D. S.; Li, Z. J.; Liu, W.; Xu, Q.; Yao, T.; Lin, Y.; Wang, H. J.; Zhao, C. M. et al. Engineering the electronic structure of submonolayer Pt on intermetallic Pd3Pb via charge transfer boosts the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 19964–19968.

25

Chua, X. J.; Luxa, J.; Eng, A. Y. S.; Tan, S. M.; Sofer, Z.; Pumera, M. Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction. ACS Catal. 2016, 6, 5724–5734.

26

Han, A.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

27

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

28

Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

29

Lu, Y. K.; Yue, C. L.; Li, Y. P.; Bao, W. J.; Guo, X. X.; Yang, W. F.; Liu, Z.; Jiang, P.; Yan, W. F.; Liu, S. J. et al. Atomically dispersed Ni on Mo2C embedded in N, P co-doped carbon derived from polyoxometalate supramolecule for high-efficiency hydrogen evolution electrocatalysis. Appl. Catal. B Environ. 2021, 296, 120336.

30

Luo, Y. T.; Zhang, S. Q.; Pan, H. Y.; Xiao, S. J.; Guo, Z. L.; Tang, L.; Khan, U.; Ding, B. F.; Li, M.; Cai, Z. Y. et al. Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution. ACS Nano 2020, 14, 767–776.

31

Wang, Y.; Wang, D. S; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

32

Cao, E. P.; Chen, Z. M.; Wu, H.; Yu, P.; Wang, Y.; Xiao, F.; Chen, S.; Du, S. C.; Xie, Y.; Wu, Y. Q.; Ren, Z. Y. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 4154–4160.

33

Sun, K. A.; Zeng, L. Y.; Liu, S. H.; Zhao, L.; Zhu, H. Y.; Zhao, J. C.; Liu, Z.; Cao, D. W.; Hou, Y. C.; Liu, Y. Q. et al. Design of basal plane active MoS2 through one-step nitrogen and phosphorus co-doping as an efficient pH-universal electrocatalyst for hydrogen evolution. Nano Energy 2019, 58, 862–869.

34

Zhao, D.; Sun, K. A.; Cheong, W. C.; Zheng, L. R.; Zhang, C.; Liu, S. J.; Cao, X.; Wu, K. L.; Pan, Y.; Zhuang, Z. W. et al. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution. Angew. Chem., Int. Ed. 2020, 59, 8982–8990.

35

Cai, J. Y.; Song, Y.; Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Xie, Y. F.; Zheng, X. S.; Liu, Y.; Lin, Y.; Liu, X. J. et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.

36

Wang, H. Q.; Xu, Z. F.; Zhang, Z. F.; Hu, S. X.; Ma, M. J.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Addressable surface engineering for N-doped WS2 nanosheet arrays with abundant active sites and the optimal local electronic structure for enhanced hydrogen evolution reaction. Nanoscale 2020, 12, 22541–22550.

37

Xu, K.; Wang, F. M.; Wang, Z. X.; Zhan, X. Y.; Wang, Q. S.; Cheng, Z. Z.; Safdar, M.; He, J. Component-controllable WS2(1−x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 2014, 8, 8468–8476.

38

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

39

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

40

Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

41

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

42

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

43

Wang, X. S.; Zheng, Y.; Sheng, W. C.; Xu, Z. J.; Jaroniec, M.; Qiao, S. Z. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 2020, 36, 125–138.

44

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

45

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

46

Ding, Y.; Zheng, W.; Lin, Z. G.; Zhu, R. N.; Jin, M. G.; Zhu, Y. M.; Huang, F. Raman tensor of layered WS2. Sci. China Mater. 2020, 63, 1848–1854.

47

Sun, L.; Geng, J. H.; Gao, M. Y.; Zheng, D. H.; Jing, Z. X.; Zhao, Q. Y.; Lin, J. J. Novel WS2/Fe0.95S1.05 hierarchical nanosphere as a highly efficient electrocatalyst for hydrogen evolution reaction. Chem. —Eur. J. 2021, 27, 10998–11004.

48

Doan, T. L. L.; Nguyen, D. C.; Prabhakaran, S.; Kim, D. H.; Tran, D. T.; Kim, N. H.; Lee, J. H. Single-atom Co-decorated MoS2 nanosheets assembled on metal nitride nanorod arrays as an efficient bifunctional electrocatalyst for pH-universal water splitting. Adv. Funct. Mater. 2021, 31, 2100233.

49

Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. G.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

50

Liu, X. X.; Wang, Y. H.; Chen, L. B.; Chen, P. P; Jia, S. P.; Zhang, Y.; Zhou, S. Y.; Zang, J. B. Co2B and Co Nanoparticles Immobilized on the N-B-doped carbon derived from nano-B4C for efficient catalysis of oxygen evolution, hydrogen evolution, and oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 37067–37078.

51

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

52

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

53

Kang, M. K.; Lin, C. Q.; Yang, H.; Guo, Y. B.; Liu, L. X.; Xue, T. Y.; Liu, Y. W.; Gong, Y. J.; Zhao, Z. S.; Zhai, T. Y. et al. Proximity enhanced hydrogen evolution reactivity of substitutional doped monolayer WS2. ACS Appl. Mater. Interfaces 2021, 13, 19406–19413.

54

Wu, J.; Chen, T.; Zhu, C. Y.; Du, J. J.; Huang, L. S.; Yan, J.; Cai, D. M.; Guan, C.; Pan, C. X. Rational construction of a WS2/CoS2 heterostructure electrocatalyst for efficient hydrogen evolution at all pH values. ACS Sustainable Chem. Eng. 2020, 8, 4474–4480.

55

Pan, Y. P.; Zheng, F. W.; Wang, X. X.; Qin, H. Y.; Liu, E. Z.; Sha, J. W.; Zhao, N. Q.; Zhang, P.; Ma, L. Y. Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping. J. Catal. 2020, 382, 204–211.

56

Sim, Y.; Yoon, A.; Kang, H. S.; Kwak, J.; Kim, S. Y.; Jo, Y.; Choe, D.; Na, W.; Lee, M. H.; Park, S. D. et al. Design of 2D layered catalyst by coherent heteroepitaxial conversion for robust hydrogen generation. Adv. Funct. Mater. 2021, 31, 2005449.

57

Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267.

58

Paudel, D. R.; Pan, U. N.; Singh, T. I.; Gudal, C. C.; Kim, N. H.; Lee, J. H. Fe and P doped 1T-phase enriched WS2 3D-dendritic nanostructures for efficient overall water splitting. Appl. Catal. B Environ. 2021, 286, 119897.

59

Le, P. A.; Nguyen, V. T.; Le, V. Q.; Lu, Y. C.; Huang, S. Y.; Sahoo, S. K.; Chu, Y. H.; Wei, K. H. One-step surface-plasma-induced exfoliation of the graphite/WS2 bilayer into homogeneous two-dimensional graphene/WS2 nanosheet composites as catalysts for the hydrogen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 5143–5154.

60

Chen, Z. Q.; Huang, A. J.; Yu, K.; Cui, T. T.; Zhuang, Z. W.; Liu, S. J.; Li, J. Z.; Tu, R. Y.; Sun, K. A.; Tan, X. et al. Fe1N4–O1 site with axial Fe-O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 2021, 14, 3430–3437.

Nano Research
Pages 1993-2002
Cite this article:
Ling M, Li N, Jiang B, et al. Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions. Nano Research, 2022, 15(3): 1993-2002. https://doi.org/10.1007/s12274-021-3898-6
Topics:

831

Views

25

Crossref

24

Web of Science

23

Scopus

3

CSCD

Altmetrics

Received: 10 August 2021
Revised: 02 September 2021
Accepted: 18 September 2021
Published: 09 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return