AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling

Guolei Xiang1( )Yang-Gang Wang2
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
Show Author Information

Graphical Abstract

How size reduction generally enhances nanomaterial surface reactivity has long remained a mysterious fundamental issue. We report an electronic-level insight into this size-reactivity relationship by combining experimental probing and mathematical modeling, from which dual roles of size are revealed.

Abstract

Size reduction can generally enhance the surface reactivity of inorganic nanomaterials. The origin of this nano-effect has been ascribed to ultrasmall size, large specific surface area, or abundant defects, but the most intrinsic electronic-level principles are still not fully understood yet. By combining experimental explorations and mathematical modeling, herein we propose an electronic-level model to reveal the physicochemical nature of size-dependent nanomaterial surface reactivity. Experimentally, we reveal that competitive redistribution of surface atomic orbitals from extended energy band states into localized surface chemical bonds is the critical electronic process of surface chemical interactions, using H2O2-TiO2 chemisorption as a model reaction. Theoretically, we define a concept, orbital potential (G), to describe the electronic feature determining the tendency of orbital redistribution, and deduce a mathematical model to reveal how size modulates surface reactivity. We expose the dual roles of size reduction in enhancing nanomaterial surface reactivity—inversely correlating to orbital potential and amplifying the effects of other structural factors on surface reactivity.

Electronic Supplementary Material

Download File(s)
12274_2021_3910_MOESM1_ESM.pdf (1.4 MB)

References

1

Kaden, W. E.; Wu, T. P.; Kunkel, W. A.; Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 2009, 326, 826–829.

2

Sun, Y. F.; Lei, F. C.; Gao, S.; Pan, B. C.; Zhou, J. F.; Xie, Y. Atomically thin tin dioxide sheets for efficient catalytic oxidation of carbon monoxide. Angew. Chem., Int. Ed. 2013, 52, 10569–10572.

3

Campbell, C. T.; Parker, S. C.; Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 2002, 298, 811–814.

4

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

5

Ciriminna, R.; Falletta, E.; Della Pina, C.; Teles, J. H.; Pagliaro, M. Industrial applications of gold catalysis. Angew. Chem., Int. Ed. 2016, 55, 14210–14217.

6

Shao, M. H.; Peles, A.; Shoemaker, K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Lett. 2011, 11, 3714–3719.

7

Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.

8

Kelly, J. A.; Shukaliak, A. M.; Fleischauer, M. D.; Veinot, J. G. C. Size-dependent reactivity in hydrosilylation of silicon nanocrystals. J. Am. Chem. Soc. 2011, 133, 9564–9571.

9

Hvolbæk, B.; Janssens, T. V. W.; Clausen, B. S.; Falsig, H.; Christensen, C. H.; Nørskov, J. K. Catalytic activity of Au nanoparticles. Nano Today 2007, 2, 14–18.

10

Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H. J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 2013, 46, 1673–1681.

11

Yang, F.; Deng, D. H.; Pan, X. L.; Fu, Q.; Bao, X. H. Understanding nano effects in catalysis. Natl. Sci. Rev. 2015, 2, 183–201.

12

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

13

Li, L.; Larsen, A. H.; Romero, N. A.; Morozov, V. A.; Glinsvad, C.; Abild-Pedersen, F.; Greeley, J.; Jacobsen, K. W.; Nørskov, J. K. Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 2013, 4, 222–226.

14

Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 2004, 223, 232–235.

15

Zhang, H. J.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 2012, 11, 49–52.

16

Fujita, T.; Guan, P. F.; McKenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780.

17

Calle-Vallejo, F.; Tymoczko, J.; Colic, V.; Vu, Q. H.; Pohl, M. D.; Morgenstern, K.; Loffreda, D.; Sautet, P.; Schuhmann, W.; Bandarenka, A. S. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015, 350, 185–189.

18

Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.

19

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

20

Anderson, R. M.; Yancey, D. F.; Zhang, L.; Chill, S. T.; Henkelman, G.; Crooks, R. M. A Theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity. Acc. Chem. Res. 2015, 48, 1351–1357.

21

Tao, H. B.; Fang, L. W.; Chen, J. Z.; Yang, H. B.; Gao, J. J.; Miao, J. W.; Chen, S. L.; Liu, B. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 9978–9985.

22

Gorzkowski, M. T.; Lewera, A. Probing the limits of d-band center theory: Electronic and electrocatalytic properties of Pd-Shell-Pt-core nanoparticleS. J. Phys. Chem. C 2015, 119, 18389–18395.

23

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

24

Bhalkikar, A.; Wu, T. S.; Fisher, T. J.; Sarella, A.; Zhang, D. W.; Gao, Y.; Soo, Y. L.; Cheung, C. L. Tunable catalytic activity of gadolinium-doped ceria nanoparticles for pro-oxidation of hydrogen peroxide. Nano Res. 2020, 13, 2384–2392.

25

Hammer, B.; Norskov, J. K. Theoretical surface science and catalysis - Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

26

Xiang, G.; Tang, Y.; Liu, Z.; Zhu, W.; Liu, H.; Wang, J.; Zhong, G.; Li, J.; Wang, X. Probing ligand-induced cooperative orbital redistribution that dominates nanoscale molecule–surface interactions with one-unit-thin TiO2 nanosheets. Nano Lett. 2018, 18, 7809–7815.

27

Viñes, F.; Gomes, J. R. B.; Illas, F. Understanding the reactivity of metallic nanoparticles: Beyond the extended surface model for catalysis. Chem. Soc. Rev. 2014, 43, 4922–4939.

28

Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

29

Latimer, A. A.; Kulkarni, A. R.; Aljama, H.; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; Nørskov, J. K. Understanding trends in C-H bond activation in heterogeneous catalysis. Nat. Mater. 2017, 16, 225–229.

30

Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

31

Kleis, J.; Greeley, J.; Romero, N. A.; Morozov, V. A.; Falsig, H.; Larsen, A. H.; Lu, J.; Mortensen, J. J.; Dulak, M.; Thygesen, K. S. et al. Finite size effects in chemical bonding: From small clusters to solids. Catal. Lett. 2011, 141, 1067–1071.

32

Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

33

Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; de Arquer, F. P. G.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.

34

Zhao, W. J.; Huang, Y.; Shen, C.; Li, C.; Cai, Y. Q.; Xu, Y.; Rong, H. T.; Gao, Q.; Wang, Y.; Zhao, L. et al. Electronic structure of exfoliated millimeter-sized monolayer WSe2 on silicon wafer. Nano Res. 2019, 12, 3095–3100.

35

Xiang, G. L.; Wang, Y. G.; Wu, D.; Li, T. Y.; He, J.; Li, J.; Wang, X. Size-dependent surface activity of rutile and anatase TiO2 nanocrystals: Facile surface modification and enhanced photocatalytic performance. Chem. —Eur. J. 2012, 18, 4759–4765.

36

Xiang, G. L.; Li, T. Y.; Zhuang, J.; Wang, X. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem. Commun. 2010, 46, 6801–6803.

37

Wu, Z. J.; Guo, K.; Cao, S.; Yao, W. Q.; Piao, L. Y. Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Res. 2020, 13, 551–556.

38

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

39

Xiang, G. L.; Wu, D.; He, J.; Wang, X. Acquired pH-responsive and reversible enrichment of organic dyes by peroxide modified ultrathin TiO2 nanosheets. Chem. Commun. 2011, 47, 11456–11458.

40
Ertl, G. Reactions at Solid Surfaces; John Wiley & Sons: Hoboken, NJ, 2009.
41

Kapilashrami, M.; Zhang, Y. F.; Liu, Y. S.; Hagfeldt, A.; Guo, J. H. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 2014, 114, 9662–9707.

42

Grunes, L. A.; Leapman, R. D.; Wilker, C. N.; Hoffmann, R.; Kunz, A. B. Oxygen K near-edge fine structure: An electron-energy-loss investigation with comparisons to new theory for selected 3d transition-metal oxides. Phys. Rev. B 1982, 25, 7157–7173.

43

Chakhalian, J.; Freeland, J. W.; Habermeier, H. U.; Cristiani, G.; Khaliullin, G.; van Veenendaal, M.; Keimer, B. Orbital reconstruction and covalent bonding at an oxide interface. Science 2007, 318, 1114–1117.

44

Qi, W. H. Nanoscopic thermodynamics. Acc Chem. Res. 2016, 49, 1587–1595.

45

Wang, L. Z.; Sasaki, T. Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 2014, 114, 9455–9486.

Nano Research
Pages 3812-3817
Cite this article:
Xiang G, Wang Y-G. Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling. Nano Research, 2022, 15(4): 3812-3817. https://doi.org/10.1007/s12274-021-3910-1
Topics:

1143

Views

24

Crossref

25

Web of Science

27

Scopus

2

CSCD

Altmetrics

Received: 28 August 2021
Revised: 25 September 2021
Accepted: 26 September 2021
Published: 30 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return