Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Elevating kinetics of passivated Fe anodes with NH4Cl regulator: Toward low-cost, long-cyclic and green cathode-free Fe-ion aqueous batteries

Shibo Chai1Jianhui Zhu1()Jian Jiang2()Chang Ming Li2,3()
School of Physical Science and Technology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, China
School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, China
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
Show Author Information

Graphical Abstract

View original image Download original image
Unique cathode-free Fe-ion batteries made of highly puffed nano carbon foams and NH4Cl-regulated FeSO4 electrolyte hold great promise as low-cost, long-cyclic and environmental-benign energy storage devices in grid-scale applications.

Abstract

The environment benignity and battery cost are major concerns for grid-scale energy storage applications. The emerging dendrite-free Fe-ion aqueous batteries are promising due to the rich natural abundance, low cost and non-toxicity for Fe resources. However, serious passivation reactions on Fe anodes and poor long-term cyclability for matched cathodes still stand in the way for their practical usage. To settle above constraints, we herein use NH4Cl as the electrolyte regulator to elevate the reaction kinetics of passivated Fe anodes, and also propose a special cathode-free design to prolong the cells lifetime over 1,000 cycles. The added NH4Cl can erode/break inert passivation layers and strengthen the ion conductivity of electrolytes, facilitating the reversible Fe plating/ stripping and Fe2+ shuttling. The highly puffed nano carbon foams function as current collectors and actives anchoring hosts, enabling expedite Fe2+ adsorption/desorption, FeII/FeIII redox conversions and FeIII deposition. The configured rocking-chair Fe-ion cells have good environmental benignity and decent energy-storage behaviors, including high reactivity/reversibility, outstanding cyclic stability and far enhanced operation longevity. Such economical, long-cyclic and green cathode-free Fe-ion batteries may hold great potential in near-future energy-storage power stations.

Electronic Supplementary Material

Download File(s)
12274_2021_3911_MOESM1_ESM.pdf (534.7 KB)

References

1

Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.

2

Ling, W.; Wang, H.; Chen, Z.; Ji, Z. Y.; Wang, J. Q.; Wei, J.; Huang, Y. Intrinsic structure modification of electrode materials for aqueous metal-ion and metal-air batteries. Adv. Funct. Mater. 2021, 31, 2006855.

3

Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180–232.

4

Bai, C.; Jin, H. J.; Gong, Z. S.; Liu, X. Z.; Yuan, Z. H. A high-power aqueous rechargeable Fe-I2 battery. Energy Stor. Mater. 2020, 28, 247–254.

5

Hao, J. N.; Li, B.; Li, X. L.; Zeng, X. H.; Zhang, S. L.; Yang, F. H.; Liu, S. L.; Li, D.; Wu, C.; Guo, Z. P. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021.

6

Jiang, L. W.; Lu, Y. X.; Zhao, C. L.; Liu, L. L.; Zhang, J. N.; Zhang, Q. Q.; Shen, X.; Zhao, J. M.; Yu, X. Q.; Li, H. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 2019, 4, 495–503.

7

Lee, M. H.; Kim, S. J.; Chang, D.; Kim, J.; Moon, S.; Oh, K.; Park, K. Y.; Seong, W. M.; Park, H.; Kwon, G. et al. Toward a low-cost high-voltage sodium aqueous rechargeable battery. Mater. Today 2019, 29, 26–36.

8

Wu, C.; Gu, S. C.; Zhang, Q. H.; Bai, Y.; Li, M.; Yuan, Y. F.; Wang, H. L.; Liu, X. Y.; Yuan, Y. X.; Zhu, N. et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 2019, 10, 73.

9

Shen, S. H.; Zhou, R. F.; Li, Y. H.; Liu, B.; Pan, G. X.; Liu, Q.; Xiong, Q. Q.; Wang, X. L.; Xia, X. H.; Tu, J. P. Bacterium, fungus, and virus microorganisms for energy storage and conversion. Small Methods 2019, 3, 1900596.

10

Wang, H. X.; Cui, Y. Nanodiamonds for energy. Carbon Energy 2019, 1, 13–18.

11

Xiong, Q. Q.; Ji, Z. G. Controllable growth of MoS2/C flower-like microspheres with enhanced electrochemical performance for lithium ion batteries. J. Alloys Compd. 2016, 673, 215–219.

12

Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M. H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Aqueous rechargeable Zn-ion batteries: An imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. J. Mater. Chem. A 2018, 6, 3850–3856.

13

Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

14

Xie, C. L.; Li, Y. H.; Wang, Q.; Sun, D.; Tang, Y. G.; Wang, H. Y. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy 2020, 2, 540–560.

15

Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

16

Li, Q.; Wang, Y. B.; Mo, F. N.; Wang, D. H.; Liang, G. J.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Zhi, C. Y. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 2021, 11, 2003931.

17

Kong, D. Z.; Wang, Y.; Huang, S. Z.; Zhang, B.; Lim, Y. V.; Sim, G. J.; Alvarado, P. V. Y.; Ge, Q.; Yang, H. Y. 3D printed compressible quasi-solid-state nickel-iron battery. ACS Nano 2020, 14, 9675–9686.

18

Lee, D. C.; Lei, D. N.; Yushin, G. Morphology and phase changes in iron anodes affecting their capacity and stability in rechargeable alkaline batteries. ACS Energy Lett. 2018, 3, 794–801.

19

Li, Q.; Li, H. S.; Xia, Q. T.; Hu, Z. Q.; Zhu, Y.; Yan, S. S.; Ge, C.; Zhang, Q. H.; Wang, X. X.; Shang, X. T. et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83.

20

Wu, X. Y.; Markir, A.; Xu, Y. K.; Zhang, C.; Leonard, D. P.; Shin, W.; Ji, X. L. A rechargeable battery with an iron metal anode. Adv. Funct. Mater. 2019, 29, 1900911.

21

Sun, S.; Rao, D. W.; Zhai, T.; Liu, Q.; Huang, H.; Liu, B.; Zhang, H. S.; Xue, L.; Xia, H. Synergistic interface-assisted electrode-electrolyte coupling toward advanced charge storage. Adv. Mater. 2020, 32, 2005344.

22

Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390–397.

23

Yaroshevsky, A. A. Abundances of chemical elements in the Earth’s crust. Geochem. Int. 2006, 44, 48–55.

24

Hawthorne, K. L.; Petek, T. J.; Miller, M. A.; Wainright, J. S.; Savinell, R. F. An investigation into factors affecting the iron plating reaction for an all-iron flow battery. J. Electrochem. Soc. 2015, 162, A108–A113.

25

Tucker, M. C.; Lambelet, D.; Oueslati, M.; Williams, B.; Wang, W. C. J.; Weber, A. Z. Improved low-cost, non-hazardous, all-iron cell for the developing world. J. Power Sources 2016, 332, 111–117.

26

Tucker, M. C.; Phillips, A.; Weber, A. Z. All-iron redox flow battery tailored for off-grid portable applications. ChemSusChem 2015, 8, 3996–4004.

27

Gong, K.; Xu, F.; Grunewald, J. B.; Ma, X. Y.; Zhao, Y.; Gu, S.; Yan, Y. S. All-soluble all-iron aqueous redox-flow battery. ACS Energy Lett. 2016, 1, 89–93.

28

Shan, P.; Gu, Y.; Yang, L. Y.; Liu, T. C.; Zheng, J. X.; Pan, F. Olivine FePO4 cathode material for rechargeable Mg-ion batteries. Inorg. Chem. 2017, 56, 13411–13416.

29

Zampardi, G.; La Mantia, F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives. Curr. Opin. Electrochem. 2020, 21, 84–92.

30

Shan, X. Q.; Guo, F. H.; Page, K.; Neuefeind, J. C.; Ravel, B.; Abeykoon, A. M. M.; Kwon, G.; Olds, D.; Su, D.; Teng, X. W. Framework doping of Ni enhances pseudocapacitive Na-ion storage of (Ni)MnO2 layered birnessite. Chem. Mater. 2019, 31, 8774–8786.

31

Zhou, J.; Shan, L. T.; Wu, Z. X.; Guo, X.; Fang, G. Z.; Liang, S. Q. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 2018, 54, 4457–4460.

32

Díaz, S. L.; Calderón, J. A.; Barcia, O. E.; Mattos, O. R. Electrodeposition of iron in sulphate solutions. Electrochim. Acta 2008, 53, 7426–7435.

33

Wu, X.; Zhang, H. H.; Huang, K. J.; Chen, Z. Stabilizing metallic iron nanoparticles by conformal graphitic carbon coating for high-rate anode in Ni-Fe batteries. Nano Lett. 2020, 20, 1700–1706.

34

Jayathilake, B. S.; Plichta, E. J.; Hendrickson, M. A.; Narayanan, S. R. Improvements to the coulombic efficiency of the iron electrode for an all-iron redox-flow battery. J. Electrochem. Soc. 2018, 165, A1630–A1638.

35

Malkhandi, S.; Yang, B.; Manohar, A. K.; Prakash, G. K. S.; Narayanan, S. R. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes. J. Am. Chem. Soc. 2013, 135, 347–353.

36

Levi, E.; Levi, M. D.; Chasid, O.; Aurbach, D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceram. 2009, 22, 13–19.

37

Tong, Z. Z.; Bazri, B.; Hu, S. F.; Liu, R. S. Interfacial chemistry in anode-free batteries: Challenges and strategies. J. Mater. Chem. A 2021, 9, 7396–7406.

38

Zhu, J. H.; Li, L. P.; Xiong, Z. H.; Hu, Y. Q.; Jiang, J. Evolution of useless iron rust into uniform α-Fe2O3 nanospheres: A smart way to make sustainable anodes for hybrid Ni–Fe cell devices. ACS Sustainable Chem. Eng. 2017, 5, 269–276.

39

Grujicic, D.; Pesic, B. Iron nucleation mechanisms on vitreous carbon during electrodeposition from sulfate and chloride solutions. Electrochim. Acta 2005, 50, 4405–4418.

40

Yang, Q.; Liang, G. J.; Guo, Y.; Liu, Z. X.; Yan, B. X.; Wang, D. H.; Huang, Z. D.; Li, X. L.; Fan, J.; Zhi, C. Y. Do zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 2019, 31, 1903778.

41

Yin, Y. B.; Wang, S. N.; Zhang, Q.; Song, Y.; Chang, N. N.; Pan, Y. W.; Zhang, H. M.; Li, X. F. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 2020, 32, 1906803.

42

Kabanov, B.; Burstein, R.; Frumkin, A. Kinetics of electrode processes on the iron electrode. Discuss. Faraday Soc. 1947, 1, 259–269.

43

Hruska, L. W.; Savinell, R. F. Investigation of factors affecting performance of the iron-redox battery. J. Electrochem. Soc. 1981, 128, 18–25.

44

Huang, S.; Zhu, J. C.; Tian, J. L.; Niu, Z. Q. Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. –Eur. J. 2019, 25, 14480–14494.

45

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P.; Li, H. B.; Hu, L. B. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

46

El-Kady, M. F.; Shao, Y. L.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033.

47

Guo, Q. B.; Kim, K. I.; Jiang, H.; Zhang, L.; Zhang, C.; Yu, D. X.; Ni, Q.; Chang, X. Q.; Chen, T. T.; Xia, H.; Ji, X. L. A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery. Adv. Funct. Mater. 2020, 30, 2002825.

48

Shi, Y. Y.; Liu, G. J.; Jin, R. C.; Xu, H.; Wang, Q. Y.; Gao, S. M. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review. Carbon Energy 2019, 1, 253–275.

49

Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.

50

Pei, S. F.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228.

51

Yang, P. H.; Ding, Y.; Lin, Z. Y.; Chen, Z. W.; Li, Y. Z.; Qiang, P. F.; Ebrahimi, M.; Mai, W. J.; Wong, C. P.; Wang, Z. L. L. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014, 14, 731–736.

52

Yang, J.; Wang, Z.; Wang, Z. X.; Zhang, J.; Zhang, Q. C.; Shum, P. P.; Wei, L. All-metal phosphide electrodes for high-performance quasi-solid-state fiber-shaped aqueous rechargeable Ni-Fe batteries. ACS Appl. Mater. Interfaces 2020, 12, 12801–12808.

53

Zeng, Y. X.; Han, Y.; Zhao, Y. T.; Zeng, Y.; Yu, M. H.; Liu, Y. J.; Tang, H. L.; Tong, Y. X.; Lu, X. H. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1402176.

54

Li, X. Q.; Xiao, D. Modification of corroded metal (Ni or Fe) foam for high-performance rechargeable alkaline Ni/Fe batteries. ChemElectroChem 2020, 7, 3098–3105.

55

Guan, C.; Zhao, W.; Hu, Y. T.; Ke, Q. Q.; Li, X.; Zhang, H.; Wang, J. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes. Adv. Energy Mater. 2016, 6, 1601034.

56

Li, R. Z.; Wang, Y. M.; Zhou, C.; Wang, C.; Ba, X.; Li, Y. Y.; Huang, X. T.; Liu, J. P. Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater. 2015, 25, 5384–5394.

57

Cheng, J.; Zhang, L.; Yang, Y. S.; Wen, Y. H.; Cao, G. P.; Wang, X. D. Preliminary study of single flow zinc–nickel battery. Electrochem. Commun. 2007, 9, 2639–2642.

58

Turker, B.; Klein, S. A.; Hammer, E. M.; Lenz, B.; Komsiyska, L. Modeling a vanadium redox flow battery system for large scale applications. Energy Convers. Manag. 2013, 66, 26–32.

59

Babakhani, A.; Rashchi, F.; Zakeri, A.; Vahidi, E. Selective separation of nickel and cadmium from sulfate solutions of spent nickel–cadmium batteries using mixtures of D2EHPA and Cyanex 302. J. Power Sources 2014, 247, 127–133.

60

Li, Z. J.; Weng, G. M.; Zou, Q. L.; Cong, G. T.; Lu, Y. C. A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 2016, 30, 283–292.

Nano Research
Pages 3187-3194
Cite this article:
Chai S, Zhu J, Jiang J, et al. Elevating kinetics of passivated Fe anodes with NH4Cl regulator: Toward low-cost, long-cyclic and green cathode-free Fe-ion aqueous batteries. Nano Research, 2022, 15(4): 3187-3194. https://doi.org/10.1007/s12274-021-3911-0
Topics:
Metrics & Citations  
Article History
Copyright
Return