AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enthalpy induced phase partition toward hierarchical, nanostructured high-entropy alloys

Rong GuoLanlan YuZhenyu LiuJie PanYonggang Yao ( )Lin Liu( )
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Show Author Information

Graphical Abstract

Using composition design and guided by enthalpy interactions, we are able to achieve hierarchical,nanostructured high-entropy alloys (HEAs) in FeCrCoAlTi0.5-Nix with a nanoscale mixture of disorder-orderedphases toward significantly improved strength and plasticity.

Abstract

Heterogeneous nanostructured metals are emerging strategies for achieving both high strength and ductility, which are particularly attractive for high entropy alloys (HEAs) to combine the synergistic enhancements from multielement composition, grain boundaries, and heterogeneity effects. However, the construction of heterogeneous nanostructured HEAs remains elusive and can involve delicate processes that are not practically scalable. Herein we report using composition design (i.e., enthalpy engineering) to create hierarchical, nanostructured HEAs as demonstrated by adding Ni into FeCrCoAlTi0.5 HEA. The strong enthalpic interaction between (Ni,Co) and (Al,Ti) pairs in FeCrCoAlTi0.5Nix (x = 0.5–1.5) induced phase partitions into B2 (ordered phase, hard) matrix and A2 (disordered phase, soft) precipitates, resulting in a hierarchical structure of B2 grains and sub-grains of near-coherent A2 nanodomains (~ 12.5 nm) divided by A2 interdendritic regions. As a result, the FeCrCoAlTi0.5Ni1.5 HEA with this unique hierarchical nanostructure exhibits the best combination of strength and plasticity, i.e., a 2-fold increase in compressive strength (2.60 GPa) and significant enhancement of plastic strain (15.8%) as compared with the original FeCrCoAlTi0.5 HEA. Enthalpy analysis and simulation study reveal the phase partition process during cooling induced by an enthalpy-driven order-disorder transition while the order parameters illustrate the strong ordering in (Ni,Co)(Al,Ti)-rich B2 phase and high entropy mixing in less interactive FeCrCo-rich A2 phase. Our work therefore provides a strategy for hierarchical nanostructured HEA formation by composition design considering enthalpy and entropy interplay.

Electronic Supplementary Material

Download File(s)
12274_2021_3912_MOESM1_ESM.pdf (557.7 KB)

References

1

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

2

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

3

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

4

Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

5

Gludovatz, B.; Hohenwarter, A.; Thurston, K. V. S.; Bei, H. B.; Wu, Z. G.; George, E. P.; Ritchie, R. O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602.

6

Li, D. Y.; Zhang, Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 2016, 70, 24–28.

7

Chuang, M. H.; Tsai, M. H.; Wang, W. R.; Lin, S. J.; Yeh, J. W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317.

8

Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 7748.

9

Li, Z. M.; Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227–230.

10

Li, Z. M.; Tasan, C. C.; Springer, H.; Gault, B.; Raabe, D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 2017, 7, 40704.

11

Senkov, O. N.; Woodward, C.; Miracle, D. B. Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM 2014, 66, 2030–2042.

12

Senkov, O. N.; Senkova, S. V.; Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 2014, 68, 214–228.

13

Senkov, O. N.; Wilks, G. B.; Miracle, D. B.; Chuang, C. P.; Liaw, P. K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765.

14

Yurchenko, N. Y.; Stepanov, N. D.; Shaysultanov, D. G.; Tikhonovsky, M. A.; Salishchev, G. A. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 2016, 121, 125–134.

15

Yurchenko, N. Y.; Stepanov, N. D.; Zherebtsov, S. V.; Tikhonovsky, M. A.; Salishchev, G. A. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mater. Sci. Eng. A 2017, 704, 82–90.

16

Chen, C.; Zhang, H.; Fan, Y. Z.; Zhang, W. W.; Wei, R.; Wang, T.; Zhang, T.; Li, F. S. A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties. J. Magn. Magn. Mater. 2020, 502, 166513.

17

Ching, W. Y.; San, S.; Brechtl, J.; Sakidja, R.; Zhang, M. Q.; Liaw, P. K. Fundamental electronic structure and multiatomic bonding in 13 biocompatible high-entropy alloys. npj Comput. Mater. 2020, 6, 45.

18

Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.

19

Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822.

20

Meyers, M. A.; Mishra, A.; Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556.

21

Koch, C. C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 2003, 49, 657–662.

22

Ma, E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 2003, 49, 663–668.

23

Ma, E.; Zhu, T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 2017, 20, 323–331.

24

Liu, S.; Gao, M. C.; Liaw, P. K.; Zhang, Y. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J. Alloys Compd. 2015, 619, 610–615.

25

Zhou, Y. J.; Zhang, Y.; Wang, Y. L.; Chen, G. L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 181904.

26

Jiao, Z. B.; Luan, J. H.; Zhang, Z. W.; Miller, M. K.; Liu, C. T. High-strength steels hardened mainly by nanoscale NiAl precipitates. Scr. Mater. 2014, 87, 45–48.

27

Zhou, Y.; Jin, X.; Zhang, L.; Du, X. Y.; Li, B. S. A hierarchical nanostructured Fe34Cr34Ni14Al14Co4 high-entropy alloy with good compressive mechanical properties. Mater. Sci. Eng. A 2018, 716, 235–239.

28

Stepanov, N. D.; Shaysultanov, D. G.; Chernichenko, R. S.; Yurchenko, N. Y.; Zherebtsov, S. V.; Tikhonovsky, M. A.; Salishchev, G. A. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. J. Alloys Compd. 2017, 693, 394–405.

29

Wang, W. R.; Wang, W. L.; Wang, S. C.; Tsai, Y. C.; Lai, C. H.; Yeh, J. W. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 2012, 26, 44–51.

30

Liu, W. H.; Lu, Z. P.; He, J. Y.; Luan, J. H.; Wang, Z. J.; Liu, B.; Liu, Y.; Chen, M. W.; Liu, C. T. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 2016, 116, 332–342.

31

Ming, K. S.; Bi, X. F.; Wang, J. Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scripta Mater. 2017, 137, 88–93.

32

Wani, I. S.; Bhattacharjee, T.; Sheikh, S.; Bhattacharjee, P. P.; Guo, S.; Tsuji, N. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater. Sci. Eng. A 2016, 675, 99–109.

33

Lu, Y. P.; Gao, X. Z.; Jiang, L.; Chen, Z. N.; Wang, T. M.; Jie, J. C.; Kang, H. J.; Zhang, Y. B.; Guo, S.; Ruan, H. H. et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017, 124, 143–150.

34

Huang, H. L.; Wu, Y.; He, J. Y.; Wang, H.; Liu, X. J.; An, K.; Wu, W.; Lu, Z. P. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 2017, 29, 1701678.

35

Gwalani, B.; Soni, V.; Lee, M.; Mantri, S.; Ren, Y.; Banerjee, R. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy. Mater. Des. 2017, 121, 254–260.

36

Wang, Z. G.; Zhou, W.; Fu, L. M.; Wang, J. F.; Luo, R. C.; Han, X. C.; Chen, B.; Wang, X. D. Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy. Mater. Sci. Eng. A 2017, 696, 503–510.

37

Zhao, Y. L.; Yang, T.; Tong, Y.; Wang, J.; Luan, J. H.; Jiao, Z. B.; Chen, D.; Yang, Y.; Hu, A.; Liu, C. T. et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017, 138, 72–82.

38

Ma, Y.; Wang, Q.; Jiang, B. B.; Li, C. L.; Hao, J. M.; Li, X. N.; Dong, C.; Nieh, T. G. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2 (Ni, Co, Fe, Cr)14 compositions. Acta Mater. 2018, 147, 213–225.

39

Li, C. L.; Ma, Y.; Hao, J. M.; Yan, Y.; Wang, Q.; Dong, C.; Liaw, P. K. Microstructures and mechanical properties of body-centered-cubic (Al, Ti)0.7(Ni, Co, Fe, Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation. Mater. Sci. Eng. A 2018, 737, 286–296.

40

Stepanova, N. D.; Shaysultanov, D. G.; Tikhonovsky, M. A.; Zherebtsov, S. V. Structure and high temperature mechanical properties of novel non-equiatomic Fe-(Co, Mn)-Cr-Ni-Al-(Ti) high entropy alloys. Intermetallics 2018, 102, 140–151.

41

He, J. Y.; Liu, W. H.; Wang, H.; Wu, Y.; Liu, X. J.; Nieh, T. G.; Lu, Z. P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014, 62, 105–113.

42

Ming, K. S.; Bi, X. F.; Wang, J. Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates. Int. J. Plast. 2018, 100, 177–191.

43

He, J. Y.; Wang, H.; Huang, H. L.; Xu, X. D.; Chen, M. W.; Wu, Y.; Liu, X. J.; Nieh, T. G.; An, K.; Lu, Z. P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196.

44

Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). JOM 2015, 67, 2271–2277.

45

Guo, W.; Pei, Z. R.; Sang, X. H.; Poplawsky, J. D.; Bruschi, S.; Qu, J.; Raabe, D.; Bei, H. B. Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability. Acta Mater. 2019, 170, 176–186.

46

Shi, P. J.; Ren, W. L.; Zheng, T. X.; Ren, Z. M.; Hou, X. L.; Peng, J. C.; Hu, P. F.; Gao, Y. F.; Zhong, Y. B.; Liaw, P. K. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 2019, 10, 489.

47

Ma, E.; Wu, X. L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy. Nat. Commun. 2019, 10, 5623.

48

Wu, X. L.; Zhu, Y. T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 2017, 5, 527–532.

49
Committee, E. E1820-11e2 Standard Test Method for Measurement of Fracture Toughness; ASTM International: West Conshohocken, USA, 2011.
50

Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092.

51
Landau, D. P.; Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics; 4th ed.; Cambridge University Press: Cambridge, 2014.
52

Santodonato, L. J.; Liaw, P. K.; Unocic, R. R.; Bei, H.; Morris, J. R. Predictive multiphase evolution in Al-containing high-entropy alloys. Nat. Commun. 2018, 9, 4520.

53

Troparevsky, M. C.; Morris, J. R.; Kent, P. R. C.; Lupini, A. R.; Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 2015, 5, 011041.

54

Zhang, L.; Zhou, D.; Li, B. S. Anomalous microstructure and excellent mechanical properties of Ni35Al21.67Cr21.67Fe21.67 high-entropy alloy with BCC and B2 structure. Mater. Lett. 2018, 216, 252–255.

55

Manzoni, A.; Daoud, H.; Völkl, R.; Glatzel, U.; Wanderka, N. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 2013, 132, 212–215.

56

Wei, C. B.; Du, X. H.; Lu, Y. P.; Jiang, H.; Li, T. J.; Wang, T. M. Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties. Int. J. Miner. Metall. Mater. 2020, 27, 1312–1317.

57

Santodonato, L. J.; Zhang, Y.; Feygenson, M.; Parish, C. M.; Gao, M. C.; Weber, R. J. K.; Neuefeind, J. C.; Tang, Z.; Liaw, P. K. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 2015, 6, 5964.

58

Singh, S.; Wanderka, N.; Murty, B. S.; Glatzel, U.; Banhart, J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011, 59, 182–190.

59

Zhu, Y. T.; Ameyama, K.; Anderson, P. M.; Beyerlein, I. J.; Gao, H. J.; Kim, H. S.; Lavernia, E.; Mathaudhu, S.; Mughrabi, H.; Ritchie, R. O. et al. Heterostructured materials: Superior properties from hetero-zone interaction. Mater. Res. Lett. 2021, 9, 1–31.

60

Yao, Y. G.; Huang, Z. N.; Hughes, L. A.; Gao, J. L.; Li, T. Y.; Morris, D.; Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z. et al. Extreme mixing in nanoscale transition metal alloys. Matter 2021, 4, 2340–2353.

61

Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829.

Nano Research
Pages 4893-4901
Cite this article:
Guo R, Yu L, Liu Z, et al. Enthalpy induced phase partition toward hierarchical, nanostructured high-entropy alloys. Nano Research, 2022, 15(6): 4893-4901. https://doi.org/10.1007/s12274-021-3912-z
Topics:
Part of a topical collection:

930

Views

22

Crossref

23

Web of Science

22

Scopus

3

CSCD

Altmetrics

Received: 15 June 2021
Revised: 08 September 2021
Accepted: 29 September 2021
Published: 27 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return