AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning the crystal structure and optical properties of selective area grown InGaAs nanowires

Zahra Azimi1( )Aswani Gopakumar1Amira S. Ameruddin1,2Li Li3Thien Truong4Hieu T. Nguyen4Hark Hoe Tan1,5Chennupati Jagadish1,5Jennifer Wong-Leung1( )
Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Malaysia
Australian National Fabrication Facility ACT Node, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
School of Engineering, The Australian National University, Canberra ACT 2601, Australia
Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
Show Author Information

Graphical Abstract

Our study shows that highly uniform InGaAs arrays with tunable optical properties can be grown by selective area epitaxy. The effective Ga content in the nanowires can be changed by controlling the growth conditions, enabling the precise tuning of their optical emission over a range of 0.6 eV.

Abstract

Catalyst-free InGaAs nanowires grown by selective area epitaxy are promising building blocks for future optoelectronic devices in the infrared spectral region. Despite progress, the role of pattern geometry and growth parameters on the composition, microstructure, and optical properties of InGaAs nanowires is still unresolved. Here, we present an optimised growth parameter window to achieve highly uniform In1−xGaxAs nanowire arrays on GaAs (111)B substrate over an extensive range of Ga concentrations, from 0.1 to 0.91, by selective-area metal-organic vapor-phase epitaxy. We observe that the Ga content always increases with decreasing In/(Ga+In) precursor ratio and group V flow rate and increasing growth temperature. The increase in Ga content is supported by a blue shift in the photoluminescence peak emission. The geometry of the nanowire arrays also plays an important role in the resulting composition. Notably, increasing the nanowire pitch size from 0.6 to 2 µm in a patterned array shifts the photoluminescence peak emission by up to 120 meV. Irrespective of these growth and geometry parameters, the Ga content determines the crystal structure, resulting in a predominantly wurtzite structure for xGa ≤ 0.3 and a predominantly zinc blende phase for xGa ≥ 0.65. These insights on the factors controlling the composition of InGaAs nanowires grown by a scalable catalyst-free approach provide directions for engineering nanowires as functional components of future optoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3914_MOESM1_ESM.pdf (1.7 MB)

References

1

Hou, J. J.; Han, N.; Wang, F. Y.; Xiu, F.; Yip, S.; Hui, A. T.; Hung, T.; Ho, J. C. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. ACS Nano 2012, 6, 3624–3630.

2

Koblmüller, G.; Abstreiter, G. Growth and properties of InGaAs nanowires on silicon. Phys. Status Solidi Rapid Res. Lett. 2014, 8, 11–30.

3

Kang, H. K.; Kim, J. Y.; Noh, M. S.; Kang, C. Y.; Kim, Y. D.; Cho, M. H.; Song, J. D. Growth of pure wurtzite InGaAs nanowires for photovoltaic and energy harvesting applications. Nano Energy 2018, 53, 57–65.

4

Chiba, K.; Yoshida, A.; Tomioka, K.; Motohisa, J. Vertical InGaAs nanowire array photodiodes on Si. ACS Photonics 2019, 6, 260–264.

5

Tan, H.; Fan, C.; Ma, L.; Zhang, X. H.; Fan, P.; Yang, Y. K.; Hu, W.; Zhou, H.; Zhuang, X. J.; Zhu, X. L. et al. Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors. Nano-Micro Lett. 2016, 8, 29–35.

6

Alexander-Webber, J. A.; Groschner, C. K.; Sagade, A. A.; Tainter, G.; Gonzalez-Zalba, M. F.; Di Pietro, R.; Wong-Leung, J.; Tan, H. H.; Jagadish, C.; Hofmann, S. et al. Engineering the photoresponse of InAs nanowires. Mater. Interfaces 2017, 9, 43993–44000.

7

Azimi, Z.; Gagrani, N.; Qu, J. T.; Lem, O. L. C.; Mokkapati, S.; Cairney, J. M.; Zheng, R. K.; Tan, H. H.; Jagadish, C.; Wong-Leung, J. Understanding the role of facets and twin defects in the optical performance of GaAs nanowires for laser applications. Nanoscale Horiz. 2021, 6, 559–567.

8

Nakai, E.; Chen, M. Y.; Yoshimura, M.; Tomioka, K.; Fukui, T. InGaAs axial-junction nanowire-array solar cells. Jpn. J. Appl. Phys. 2015, 54, 015201.

9

Kim, H.; Lee, W. J.; Farrell, A. C.; Morales, J. S. D.; Senanayake, P.; Prikhodko, S. V.; Ochalski, T. J.; Huffaker, D. L. Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature. Nano Lett. 2017, 17, 3465–3470.

10

Kim, H.; Lee, W. J.; Chang, T. Y.; Huffaker, D. L. Room-temperature InGaAs nanowire array band-edge lasers on patterned silicon-on-insulator platforms. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1800489.

11

Ng, K. W.; Tran, T. T. D.; Ko, W. S.; Chen, R.; Lu, F. L.; Chang-Hasnain, C. J. Single crystalline InGaAs nanopillar grown on polysilicon with dimensions beyond the substrate grain size limit. Nano Lett. 2013, 13, 5931–5937.

12

Ng, K. W.; Ko, W. S.; Chen, R.; Lu, F.; Tran, T. T. D.; Li, K.; Chang-Hasnain, C. J. Composition homogeneity in InGaAs/GaAs core-shell nanopillars monolithically grown on silicon. ACS Appl. Mater. Interfaces 2014, 6, 16706–16711.

13

Tomioka, K.; Yoshimura, M.; Fukui, T. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189–192.

14

Hertenberger, S.; Funk, S.; Vizbaras, K.; Yadav, A.; Rudolph, D.; Becker, J.; Bolte, S.; Döblinger, M.; Bichler, M.; Scarpa, G. et al. High compositional homogeneity in In-rich InGaAs nanowire arrays on nanoimprinted SiO2/Si(111). Appl. Phys. Lett. 2012, 101, 043116.

15

Yoshimura, M.; Tomioka, K.; Hiruma, K.; Hara, S.; Motohisa, J.; Fukui, T. Lattice-mismatched InGaAs nanowires formed on GaAs (111)B by selective-area MOVPE. J. Cryst. Growth 2011, 315, 148–151.

16

Treu, J.; Speckbacher, M.; Saller, K.; Morkötter, S.; Döblinger, M.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy. Appl. Phys. Lett. 2016, 108, 053110.

17

Kim, H.; Farrell, A. C.; Senanayake, P.; Lee, W. J.; Huffaker, D. L. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett. 2016, 16, 1833–1839.

18

Sato, T.; Motohisa, J.; Noborisaka, J.; Hara, S.; Fukui, T. Growth of InGaAs nanowires by selective-area metalorganic vapor phase epitaxy. J. Cryst. Growth 2008, 310, 2359–2364.

19

Shapiro, J. N.; Lin, A.; Wong, P. S.; Scofield, A. C.; Tu, C.; Senanayake, P. N.; Mariani, G.; Liang, B. L.; Huffaker, D. L. InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy. Appl. Phys. Lett. 2010, 97, 243102.

20

Joyce, H. J.; Gao, Q.; Wong-Leung, J.; Kim, Y.; Tan, H. H.; Jagadish, C. Tailoring GaAs, InAs, and InGaAs nanowires for optoelectronic device applications. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 766–778.

21

Wu, J.; Borg, B. M.; Jacobsson, D.; Dick, K. A.; Wernersson, L. E. Control of composition and morphology in InGaAs nanowires grown by metalorganic vapor phase epitaxy. J. Cryst. Growth 2013, 383, 158–165.

22

Kim, Y.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Paladugu, M.; Zou, J.; Suvorova, A. A. Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. Nano Lett. 2006, 6, 599–604.

23

Guo, Y. N.; Xu, H. Y.; Auchterlonie, G. J.; Burgess, T.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Shu, H. B.; Chen, X. S. et al. Phase separation induced by Au catalysts in ternary InGaAs nanowires. Nano Lett. 2013, 13, 643–650.

24

Zhou, C.; Zhang, X. T.; Zheng, K.; Chen, P. P.; Lu, W.; Zou, J. Self-assembly growth of in-rich InGaAs core-shell structured nanowires with remarkable near-infrared photoresponsivity. Nano Lett. 2017, 17, 7824–7830.

25

Ameruddin, A. S.; Fonseka, H. A.; Caroff, P.; Wong-Leung, J.; Op, Het Veld R. L.; Boland, J. L.; Johnston, M. B.; Tan, H. H.; Jagadish, C. InxGa1−xAs nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology. Nanotechnology 2015, 26, 205604.

26

Yoshida, A.; Tomioka, K.; Ishizaka, F.; Motohisa, J. Growth of InGaAs nanowires on Ge(111) by selective-area metal-organic vapor-phase epitaxy. J. Cryst. Growth 2017, 464, 75–79.

27

Chiba, K.; Tomioka, K.; Yoshida, A.; Motohisa, J. Composition controllability of InGaAs nanowire arrays in selective area growth with controlled pitches on Si platform. AIP Adv. 2017, 7, 125304.

28

Kohashi, Y.; Sato, T.; Ikejiri, K.; Tomioka, K.; Hara, S.; Motohisa, J. Influence of growth temperature on growth of InGaAs nanowires in selective-area metal-organic vapor-phase epitaxy. J. Cryst. Growth 2012, 338, 47–51.

29

Sato, T.; Kobayashi, Y.; Motohisa, J.; Hara, S.; Fukui, T. SA-MOVPE of InGaAs nanowires and their compositions studied by micro-PL measurement. J. Cryst. Growth 2008, 310, 5111–5113.

30
Shapiro, J.; Scofield, A. C.; Lin, A.; Benzoni, N.; Mariani, G.; Huffaker, D. L. The dependence of alloy composition of InGaAs inserts in GaAs nanopillars on selective-area pattern geometry. 2013, arXiv:1305.3581. arXiv.org e-Print archive. https://arxiv.org/abs/1305.3581 (accessed Feb 5th, 2018).
31

Rudolph, D.; Hertenberger, S.; Bolte, S.; Paosangthong, W.; Spirkoska, D.; Döblinger, M.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Direct observation of a noncatalytic growth regime for GaAs nanowires. Nano Lett. 2011, 11, 3848–3854.

32

Shin, J. C.; Choi, K. J.; Kim, D. Y.; Choi, W. J.; Li, X. L. Characteristics of strain-induced InxGa1−xAs nanowires grown on Si(111) substrates. Cryst. Growth Des. 2012, 12, 2994–2998.

33

Day, R. W.; Mankin, M. N.; Lieber, C. M. Plateau-rayleigh crystal growth of nanowire heterostructures: Strain-modified surface chemistry and morphological control in one, two, and three dimensions. Nano Lett. 2016, 16, 2830–2836.

34

Shin, J. C.; Kim, K. H.; Yu, K. J.; Hu, H. F.; Yin, L. J.; Ning, C. Z.; Rogers, J. A.; Zuo, J. M.; Li, X. L. InxGa1−xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. Nano Lett. 2011, 11, 4831–4838.

35

Fujii, T.; Ekawa, M. Origin of compositional modulation of InGaAs in selective area metalorganic vapor phase epitaxy. J. Appl. Phys. 1995, 78, 5373–5386.

36

Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. Mass spectrometric studies of trimethylindium pyrolysis. J. Cryst. Growth 1988, 92, 591–604.

37

Li, S. H.; Larsen, C. A.; Stringfellow, G. B. Decomposition mechanisms of trimethylarsine. J. Cryst. Growth 1990, 102, 117–125.

38

Kobayashi, N. In-situ monitoring and control of surface processes in metalorganic vapor phase epitaxy by surface photo-absorption. J. Cryst. Growth 1994, 145, 1–11.

39

Dayeh, S. A.; Yu, E. T.; Wang, D. L. III–V nanowire growth mechanism: V/III ratio and temperature effects. Nano Lett. 2007, 7, 2486–2490.

40

Nahory, R. E.; Pollack, M. A.; Johnston, W. D.; Barns, R. L. Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP. Appl. Phys. Lett. 1978, 33, 659–661.

41

Demichel, O.; Heiss, M.; Bleuse, J.; Mariette, H.; Fontcuberta, i Morral A. Impact of surfaces on the optical properties of GaAs nanowires. Appl. Phys. Lett. 2010, 97, 201907.

42

Treu, J.; Xu, X.; Ott, K.; Saller, K.; Abstreiter, G.; Finley, J. J.; Koblmüller, G. Optical absorption of composition-tunable InGaAs nanowire arrays. Nanotechnology 2019, 30, 495703.

43

Olsson, L. Ö.; Andersson C. B. M.; Håkansson, M. C.; Kanski, J.; Ilver, L.; Karlsson, U. O. Charge accumulation at inas surfaces. Phys. Rev. Lett. 1996, 76, 3626–3629.

44

Speckbacher, M.; Treu, J.; Whittles, T. J.; Linhart, W. M.; Xu, X. M.; Saller, K.; Dhanak, V. R.; Abstreiter, G.; Finley, J. J.; Veal, T. D. et al. Direct measurements of Fermi level pinning at the surface of intrinsically n-type InGaAs nanowires. Nano Lett 2016, 16, 5135–5142.

45

Morkötter, S.; Funk, S.; Liang, M. Y.; Döblinger, M.; Hertenberger, S.; Treu, J.; Rudolph, D.; Yadav, A.; Becker, J.; Bichler, M. et al. Role of microstructure on optical properties in high-uniformity In1−xGaxAs nanowire arrays: Evidence of a wider wurtzite band gap. Phys. Rev. B - Condens. Matter Mater. Phys. 2013, 87, 205303.

46

Zanolli, Z.; Fuchs, F.; Furthmüller, J.; Von, Barth U.; Bechstedt, F. Model GW band structure of InAs and GaAs in the wurtzite phase. Phys. Rev. B 2007, 75, 245121.

47

De, Luca M.; Lavenuta, G.; Polimeni, A.; Rubini, S.; Grillo, V.; Mura, F.; Miriametro, A.; Capizzi, M.; Martelli, F. Excitonic recombination and absorption in InxGa1−xAs/GaAs heterostructure nanowires. Phys. Rev. B 2013, 87, 235304.

48

Yuan, X. M.; Li, L.; Li, Z. Y.; Wang, F.; Wang, N. Y.; Fu, L.; He, J.; Tan, H. H.; Jagadish, C. Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires. Nanoscale 2019, 11, 9207–9215.

49

Treu, J.; Bormann, M.; Schmeiduch, H.; Döblinger, M.; Morkötter, S.; Matich, S.; Wiecha, P.; Saller, K.; Mayer, B.; Bichler, M. et al. Enhanced luminescence properties of InAs-InAsP core-shell nanowires. Nano Lett. 2013, 13, 6070–6077.

50

Balaghi, L.; Bussone, G.; Grifone, R.; Hübner, R.; Grenzer, J.; Ghorbani-Asl, M.; Krasheninnikov, A. V.; Schneider, H.; Helm, M.; Dimakis, E. Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nat. Commun. 2019, 10, 2793.

51

Yoshida, H.; Ikejiri, K.; Sato, T.; Hara, S.; Hiruma, K.; Motohisa, J.; Fukui, T. Analysis of twin defects in GaAs nanowires and tetrahedra and their correlation to GaAs(111)B surface reconstructions in selective-area metal organic vapour-phase epitaxy. J. Cryst. Growth 2009, 312, 52–57.

52

Mandl, B.; Stangl, J.; Mårtensson, T.; Mikkelsen, A.; Eriksson, J.; Karlsson, L. S.; Bauer, G.; Samuelson, L.; Seifert, W. Au-free epitaxial growth of InAs nanowires. Nano Lett. 2006, 6, 1817–1821.

53

Yoshimura, M.; Tomioka, K.; Hiruma, K.; Hara, S.; Motohisa, J.; Fukui, T. Growth and characterization of InGaAs nanowires formed on GaAs(111)B by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 2010, 49, 04DH08.

54

Yuan, X. M.; Caroff, P.; Wong-Leung, J.; Tan, H. H.; Jagadish, C. Controlling the morphology, composition and crystal structure in gold-seeded GaAs1−xSbx nanowires. Nanoscale 2015, 7, 4995–5003.

55

Conesa-Boj, S.; Kriegner, D.; Han, X. L.; Plissard, S.; Wallart, X.; Stangl, J.; Fontcuberta, i Morral A.; Caroff, P. Gold-free ternary III–V antimonide nanowire arrays on silicon: Twin-free down to the first bilayer. Nano Lett. 2014, 14, 326–332.

56

Dubrovskii, V. G. Evolution of the length and radius of catalyst-free III–V nanowires grown by selective area epitaxy. ACS Omega 2019, 4, 8400–8405.

57

Berg, A.; Caroff, P.; Shahid, N.; Lockrey, M. N.; Yuan, X. M.; Borgström, M. T.; Tan, H. H.; Jagadish, C. Growth and optical properties of InxGa1−xP nanowires synthesized by selective-area epitaxy. Nano Res. 2017, 10, 672–682.

Nano Research
Pages 3695-3703
Cite this article:
Azimi Z, Gopakumar A, Ameruddin AS, et al. Tuning the crystal structure and optical properties of selective area grown InGaAs nanowires. Nano Research, 2022, 15(4): 3695-3703. https://doi.org/10.1007/s12274-021-3914-x
Topics:

812

Views

6

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 08 August 2021
Revised: 26 September 2021
Accepted: 29 September 2021
Published: 16 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return