AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intrinsically scale-free ferroelectricity in two-dimensional M2X2Y6

Xin Jin1,§Lei Tao1,§Yu-Yang Zhang1,3Jinbo Pan1,3( )Shixuan Du1,2,3( )
Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
CAS Key Laboratory of Vacuum Physics, Beijing 100049, China

§ Xin Jin and Lei Tao contributed equally to this work.

Show Author Information

Graphical Abstract

The ferroelectric (FE) M2X2Y6 monolayers show intrinsic scale-free ferroelectricity, i.e., the polarizations in adjacent M2X2Y6 unit cell can be reversed independently, indicating its potential applications in high-density storage.

Abstract

Discovery of novel two-dimensional (2D) ferroelectric materials and understanding the mechanism are of vital importance for the design of nanoscale ferroelectric devices. Herein, we report the distinct geometric evolution mechanism of the newly reported M2Ge2Y6 monolayers and find out a large group of 2D ferroelectric candidates based on this mechanism. The origination of the ferroelectricity of M2Ge2Y6 is the vertical displacement of Ge-dimer in the same direction driven by a soft phonon mode of the centrosymmetric configuration. Interestingly, we find another centrosymmetric configuration which is dynamically stable but higher in energy comparing with the ferroelectric phase. The metastable centrosymmetric phase of M2Ge2Y6 monolayers allows a new two-step ferroelectric switching path and may induce novel domain behaviors. Moreover, the ferroelectric M2Ge2Y6 monolayers exhibit independently switchable dipoles and maintain their ferroelectricity after contacting with graphene electrodes, indicating their high application potentials in high-density storage. Furthermore, 16 ferroelectric (FE) M2Ge2Y6 and 65 potential FE M2Sn2Y6 monolayers are identified through high-throughput calculations. Our findings provide a new strategy for future discovery of novel 2D ferroelectric materials and also platforms for experimental design of related functional devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3919_MOESM1_ESM.pdf (1.2 MB)

References

1

Garcia, V.; Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 2014, 5, 4289.

2

Chen, A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electron 2016, 125, 25–38.

3

Qi, L.; Ruan, S. C.; Zeng, Y. J. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 2021, 33, 2005098.

4

Jin, X.; Zhang, Y. Y.; Pantelides, S. T.; Du, S. X. Integration of graphene and two-dimensional ferroelectrics: Properties and related functional devices. Nanoscale Horiz. 2020, 5, 1303–1308.

5

Chang, K.; Liu, J. W.; Lin, H. C.; Wang, N.; Zhao, K.; Zhang, A. M.; Jin, F.; Zhong, Y.; Hu, X. P.; Duan, W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278.

6

Liu, F. C.; You, L.; Seyler, K. L.; Li, X. B.; Yu, P.; Lin, J. H.; Wang, X. W.; Zhou, J. D.; Wang, H.; He, H. Y. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357.

7

Wang, H.; Liu, Z. R.; Yoong, H. Y.; Paudel, T. R.; Xiao, J. X.; Guo, R.; Lin, W. N.; Yang, P.; Wang, J.; Chow, G. M. et al. Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat. Commun. 2018, 9, 3319.

8

Ji, D. X.; Cai, S. H.; Paudel, T. R.; Sun, H. Y.; Zhang, C. C.; Han, L.; Wei, Y. F.; Zang, Y. P.; Gu, M.; Zhang, Y. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90.

9

Yuan, S. G.; Luo, X.; Chan, H. L.; Xiao, C. C.; Dai, Y. W.; Xie, M. H.; Hao, J. H. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 2019, 10, 1775.

10

Xiao, J.; Zhu, H. Y.; Wang, Y.; Feng, W.; Hu, Y. X.; Dasgupta, A.; Han, Y. M.; Wang, Y.; Muller, D. A.; Martin, L. W. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 2018, 120, 227601.

11

Cui, C. J.; Hu, W. J.; Yan, X. X.; Addiego, C.; Gao, W. P.; Wang, Y.; Wang, Z.; Li, L. Z.; Cheng, Y. C.; Li, P. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 2018, 18, 1253–1258.

12

Ding, J.; Shao, D. F.; Li, M.; Wen, L. W.; Tsymbal, E. Y. Two-dimensional antiferroelectric tunnel junction. Phys. Rev. Lett. 2021, 126, 057601.

13

Cui, C. J.; Xue, F.; Hu, W. J.; Li, L. J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2018, 2, 18.

14

Brehm, J. A.; Neumayer, S. M.; Tao, L.; O’Hara, A.; Chyasnavichus, M.; Susner, M. A.; McGuire, M. A.; Kalinin, S. V.; Jesse, S.; Ganesh, P. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 2020, 19, 43–48.

15

Shen, X. W.; Tong, W. Y.; Gong, S. J.; Duan, C. G. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials. 2D Mater. 2017, 5, 011001.

16

Lai, Y. F.; Song, Z. G.; Wan, Y.; Xue, M. Z.; Wang, C. S.; Ye, Y.; Dai, L.; Zhang, Z. D.; Yang, W. Y.; Du, H. L. et al. Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6. Nanoscale 2019, 11, 5163–5170.

17

Chandrasekaran, A.; Mishra, A.; Singh, A. K. Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene. Nano Lett. 2017, 17, 3290–3296.

18

Yu, Z. H.; Xia, W.; Xu, K. L.; Xu, M.; Wang, H. Y.; Wang, X.; Yu, N.; Zou, Z. Q.; Zhao, J. G.; Wang, L. et al. Pressure-induced structural phase transition and a special amorphization phase of two-dimensional ferromagnetic semiconductor Cr2Ge2Te6. J. Phys. Chem. C 2019, 123, 13885–13891.

19

Ge, W. N.; Xu, K. L.; Xia, W.; Yu, Z. H.; Wang, H. Y.; Liu, X. L.; Zhao, J. G.; Wang, X.; Yu, N.; Zou, Z. Q. et al. Raman spectroscopy and lattice dynamical stability study of 2D ferromagnetic semiconductor Cr2Ge2Te6 under high pressure. J. Alloys Compd. 2020, 819, 153368.

20

Shuang, Y.; Hatayama, S.; Tanimura, H.; Ando, D.; Ichitsubo, T.; Sutou, Y. Nitrogen doping-induced local structure change in a Cr2Ge2Te6 inverse resistance phase-change material. Mater. Adv. 2020, 1, 2426–2432.

21

Hao, K. R.; Ma, X. Y.; Lyu, H. Y.; Zhu, Z. G.; Yan, Q. B.; Su, G. The atlas of ferroicity in two-dimensional MGeX3 family: Room-temperature ferromagnetic half metals and unexpected ferroelectricity and ferroelasticity. Nano Res. 2021, 14, 4732–4739.

22

Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.

23

Lee, H. J.; Lee, M.; Lee, K.; Jo, J.; Yang, H.; Kim, Y.; Chae, S. C.; Waghmare, U.; Lee, J. H. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 2020, 369, 1343–1347.

24

Tan, X. L.; Ma, C.; Frederick, J.; Beckman, S.; Webber, K. G. The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J. Am. Ceram. Soc. 2011, 94, 4091–4107.

25

Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314–319.

26

Song, Y.; Pan, J. B.; Zhang, Y. F.; Yang, H. T.; Du, S. X. Monolayer iridium sulfide halides with high mobility transport anisotropy and highly efficient light harvesting. J. Phys. Chem. Lett. 2021, 12, 6007–6013.

27

Ji, H. W.; Stokes, R. A.; Alegria, L. D.; Blomberg, E. C.; Tanatar, M. A.; Reijnders, A.; Schoop, L. M.; Liang, T.; Prozorov, R.; Burch, K. S. et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J. Appl. Phys. 2013, 114, 114907.

28

Zhang, J. X.; Cai, X. C.; Xia, W.; Liang, A. J.; Huang, J. W.; Wang, C. W.; Yang, L. X.; Yuan, H. T.; Chen, Y. L.; Zhang, S. L. et al. Unveiling electronic correlation and the ferromagnetic superexchange mechanism in the van der Waals crystal CrSiTe3. Phys. Rev. Lett. 2019, 123, 047203.

29

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

30

Wen, Z.; Wu, D. Ferroelectric tunnel junctions: Modulations on the potential barrier. Adv. Mater. 2020, 32, 1904123.

31

Beckman, S. P.; Wang, X. J.; Rabe, K. M.; Vanderbilt, D. Ideal barriers to polarization reversal and domain-wall motion in strained ferroelectric thin films. Phys. Rev. B 2009, 79, 144124.

32

Huang, S.; Shuai, Z. G.; Wang, D. Ferroelectricity in 2D metal phosphorus trichalcogenides and van der Waals heterostructures for photocatalytic water splitting. J. Mater. Chem. A 2021, 9, 2734–2741.

33

Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956.

34

Bilc, D. I.; Orlando, R.; Shaltaf, R.; Rignanese, G. M.; Íñiguez, J.; Ghosez, P. Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys. Rev. B 2008, 77, 165107.

35

Li, Z.; Zhou, B. Z. Theoretical investigation of nonvolatile electrical control behavior by ferroelectric polarization switching in two-dimensional MnCl3/CuInP2S6 van der Waals heterostructures. J. Mater. Chem. C 2020, 8, 4534–4541.

36

Kresse, G.; Furthmüller, J. Efficiency of abinitio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

37

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

38

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

39

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

40

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

41

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505–1509.

42

Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 2006, 73, 195107.

43

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

44

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

45

Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268.

46

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

47

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

Nano Research
Pages 3704-3710
Cite this article:
Jin X, Tao L, Zhang Y-Y, et al. Intrinsically scale-free ferroelectricity in two-dimensional M2X2Y6. Nano Research, 2022, 15(4): 3704-3710. https://doi.org/10.1007/s12274-021-3919-5
Topics:

1067

Views

13

Crossref

14

Web of Science

13

Scopus

3

CSCD

Altmetrics

Received: 16 June 2021
Revised: 27 September 2021
Accepted: 03 October 2021
Published: 17 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return