Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional (2D) honeycomb-like materials have been widely studied due to their fascinating properties. In particular, 2D honeycomb-like transition metal monolayers, which are good 2D ferromagnet candidates, have attracted intense research interest. The honeycomb-like structure of hafnium, hafnene, has been successfully fabricated on the Ir(111) substrate. However, its electronic structure has not yet been directly elucidated. Here, we report the electronic structure of hafnene grown on the Ir(111) substrate using angle-resolved photoemission spectroscopy (ARPES). Our results indicate that the presence of spin-orbit coupling and Hubbard interaction suppresses the earlier predicted Dirac cones at the K points of the Brillouin zone. The observed band structure of hafnene near the Fermi level is very simple: an electron pocket centered at the Γ point of the Brillouin zone. This electron pocket shows typical parabolic dispersion, and its estimated electron effective mass and electron density are approximately 1.8 me and 7 × 1014 cm−2, respectively. Our results demonstrate the existence of 2D electron gas in hafnene grown on the Ir(111) substrate and therefore provide key information for potential hafnene-based device applications.
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.
Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.
Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27.
Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.
Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of Silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507–3511.
Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.
Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.
Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510–2516.
Zhang, L.; Bampoulis, P.; Rudenko, A. N.; Yao, Q.; van Houselt, A.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett. 2016, 116, 256804.
Li, L. F.; Lu, S. Z.; Pan, J. B.; Qin, Z. H.; Wang, Y. Q.; Wang, Y. L.; Cao, G. Y.; Du, S. X.; Gao, H. J. Buckled germanene formation on Pt(111). Adv. Mater. 2014, 26, 4820–4824.
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.
Li, X. R.; Dai, Y.; Ma, Y. D.; Huang, B. B. Electronic and magnetic properties of honeycomb transition metal monolayers: First-principles insights. Phys. Chem. Chem. Phys. 2014, 16, 13383–13389.
Li, L. F.; Wang, Y. L.; Xie, S. Y.; Li, X. B.; Wang, Y. Q.; Wu, R. T.; Sun, H. B.; Zhang, S. B.; Gao, H. J. Two-dimensional transition metal honeycomb realized: Hf on Ir(111). Nano Lett. 2013, 13, 4671–4674.
Pan, Y.; Zhang, L. Z.; Huang, L.; Li, L. F.; Meng, L.; Gao, M.; Huan, Q.; Lin, X.; Wang, Y. L.; Du, S. X. et al. Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene. Small 2014, 10, 2215–2225.
Zhou, B. Z.; Dong, S. J.; Wang, X. C.; Zhang, K. L. Prediction of two-dimensional d-block elemental materials with normal honeycomb, triangular-dodecagonal, and square-octagonal structures from first principles. Appl. Surf. Sci. 2017, 419, 484–496.
Hashmi, A.; Farooq, M. U.; Khan, I.; Hong, J. S. Two-dimensional honeycomb hafnene monolayer: Stability and magnetism by structural transition. Nanoscale 2017, 9, 10038–10043.
Tadele, K.; Zhang, Q. F.; Wang, B. L. Formation and structural growth of two dimensional layer of hafnene on Ir(111) surface. Chem. Phys. Lett. 2018, 712, 60–65.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott−Hubbard insulators. Phys. Rev. B 1995, 52, R5467–R5470.
Medeiros, P. V. C.; Stafström, S.; Björk, J. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding. Phys. Rev. B 2014, 89, 041407.
Medeiros, P. V. C.; Tsirkin, S. S.; Stafström, S.; Björk, J. Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator. Phys. Rev. B 2015, 91, 041116.
Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.
Briggs, N.; Gebeyehu, Z. M.; Vera, A.; Zhao, T.; Wang, K.; Duran, A. D. L. F.; Bersch, B.; Bowen, T.; Knappenberger, K. L. Jr.; Robinson, J. A. Epitaxial graphene/silicon carbide intercalation: A minireview on graphene modulation and unique 2D materials. Nanoscale 2019, 11, 15440–15447.