AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Direct evidence of two-dimensional electron gas-like band structures in hafnene

Shaozhu Xiao1,§Meng Liu2,§Linfei Li3,§Jiatao Sun2( )Yeliang Wang2( )Shaolong He1,4( )
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

§ Shaozhu Xiao, Meng Liu, and Linfei Li contributed equally to this work.

Show Author Information

Graphical Abstract

The electronic structure of hafnene grown on the Ir(111) substrate has been studied using angle-resolved photoemission spectroscopy (ARPES). The observed band structure of hafnene near the Fermi level is a parabolic dispersive electron pocket centered at the Γ point of the Brillouin zone, demonstrating the existence of two-dimensional (2D) electron gas in hafnene grown on an Ir(111) substrate.

Abstract

Two-dimensional (2D) honeycomb-like materials have been widely studied due to their fascinating properties. In particular, 2D honeycomb-like transition metal monolayers, which are good 2D ferromagnet candidates, have attracted intense research interest. The honeycomb-like structure of hafnium, hafnene, has been successfully fabricated on the Ir(111) substrate. However, its electronic structure has not yet been directly elucidated. Here, we report the electronic structure of hafnene grown on the Ir(111) substrate using angle-resolved photoemission spectroscopy (ARPES). Our results indicate that the presence of spin-orbit coupling and Hubbard interaction suppresses the earlier predicted Dirac cones at the K points of the Brillouin zone. The observed band structure of hafnene near the Fermi level is very simple: an electron pocket centered at the Γ point of the Brillouin zone. This electron pocket shows typical parabolic dispersion, and its estimated electron effective mass and electron density are approximately 1.8 me and 7 × 1014 cm−2, respectively. Our results demonstrate the existence of 2D electron gas in hafnene grown on the Ir(111) substrate and therefore provide key information for potential hafnene-based device applications.

Electronic Supplementary Material

Download File(s)
12274_2021_3920_MOESM1_ESM.pdf (711.1 KB)

References

1

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

2

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

3

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

4

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

5

Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27.

6

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

7

Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of Silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507–3511.

8

Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.

9

Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.

10

Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510–2516.

11

Zhang, L.; Bampoulis, P.; Rudenko, A. N.; Yao, Q.; van Houselt, A.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett. 2016, 116, 256804.

12

Li, L. F.; Lu, S. Z.; Pan, J. B.; Qin, Z. H.; Wang, Y. Q.; Wang, Y. L.; Cao, G. Y.; Du, S. X.; Gao, H. J. Buckled germanene formation on Pt(111). Adv. Mater. 2014, 26, 4820–4824.

13

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

14

Li, X. R.; Dai, Y.; Ma, Y. D.; Huang, B. B. Electronic and magnetic properties of honeycomb transition metal monolayers: First-principles insights. Phys. Chem. Chem. Phys. 2014, 16, 13383–13389.

15

Li, L. F.; Wang, Y. L.; Xie, S. Y.; Li, X. B.; Wang, Y. Q.; Wu, R. T.; Sun, H. B.; Zhang, S. B.; Gao, H. J. Two-dimensional transition metal honeycomb realized: Hf on Ir(111). Nano Lett. 2013, 13, 4671–4674.

16

Pan, Y.; Zhang, L. Z.; Huang, L.; Li, L. F.; Meng, L.; Gao, M.; Huan, Q.; Lin, X.; Wang, Y. L.; Du, S. X. et al. Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene. Small 2014, 10, 2215–2225.

17

Zhou, B. Z.; Dong, S. J.; Wang, X. C.; Zhang, K. L. Prediction of two-dimensional d-block elemental materials with normal honeycomb, triangular-dodecagonal, and square-octagonal structures from first principles. Appl. Surf. Sci. 2017, 419, 484–496.

18

Hashmi, A.; Farooq, M. U.; Khan, I.; Hong, J. S. Two-dimensional honeycomb hafnene monolayer: Stability and magnetism by structural transition. Nanoscale 2017, 9, 10038–10043.

19

Tadele, K.; Zhang, Q. F.; Wang, B. L. Formation and structural growth of two dimensional layer of hafnene on Ir(111) surface. Chem. Phys. Lett. 2018, 712, 60–65.

20

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

21

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

22

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

23

Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott−Hubbard insulators. Phys. Rev. B 1995, 52, R5467–R5470.

24

Medeiros, P. V. C.; Stafström, S.; Björk, J. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding. Phys. Rev. B 2014, 89, 041407.

25

Medeiros, P. V. C.; Tsirkin, S. S.; Stafström, S.; Björk, J. Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator. Phys. Rev. B 2015, 91, 041116.

26

Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

27

Briggs, N.; Gebeyehu, Z. M.; Vera, A.; Zhao, T.; Wang, K.; Duran, A. D. L. F.; Bersch, B.; Bowen, T.; Knappenberger, K. L. Jr.; Robinson, J. A. Epitaxial graphene/silicon carbide intercalation: A minireview on graphene modulation and unique 2D materials. Nanoscale 2019, 11, 15440–15447.

Nano Research
Pages 3770-3774
Cite this article:
Xiao S, Liu M, Li L, et al. Direct evidence of two-dimensional electron gas-like band structures in hafnene. Nano Research, 2022, 15(4): 3770-3774. https://doi.org/10.1007/s12274-021-3920-z
Topics:

814

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 July 2021
Revised: 27 September 2021
Accepted: 03 October 2021
Published: 15 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return