AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters

Zhaoxian Qin1,4,§Song Hu3,4,§Wenhua Han2Zhiwen Li1,4Wen Wu Xu2( )Jingjing Zhang1,4Gao Li1,4( )
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Zhaoxian Qin and Song Hu contributed equally to this work.

Show Author Information

Graphical Abstract

We here develop a highly controllable strategy for exchanging a single Ag atom into the central gold site of Au13Ag12(PPh3)10Cl8 (Ph = phenyl) nanoclusters to tailor their electronic properties on the enhancement of fluorescence and catalytic activity in the photocatalytic oxidation.

Abstract

Precise mono-doping of metal atom into metal particles at a specific particle position (e.g., the central site) in a highly controllable manner is still a challenge. In this work, we develop a highly controllable strategy for exchanging a single Ag atom into the central gold site of Au13Ag12(PPh3)10Cl8 (Ph = phenyl) nanoclusters. Interestingly, a “pigeon-pair” cluster of {[Au13Ag12(PPh3)10Cl8]·[Au12Ag13(PPh3)10Cl8]}2+ is obtained and confirmed by electrospray ionization mass spectrometry (ESI-MS), thermogravimetric analysis (TGA) and single crystal X-ray diffraction (SCXRD) analysis. The experimental results and density functional theory (DFT) calculations suggest that the single-metal-atom exchanging from [Au13Ag12(PPh3)10Cl8]+ to [Au12Ag13(PPh3)10Cl8]+ occurs at the central position through the side entry of the μ3-bridging Cl atoms. Finally, the effects on the electronic structure and properties caused by the single-atom exchange at the central site are shown by the enhancement of fluorescence and catalytic activity in the photocatalytic oxidation of ethanol.

Electronic Supplementary Material

Download File(s)
12274_2021_3928_MOESM1_ESM.pdf (364.3 KB)

References

1

Wu, Z. L.; Hu, G. X.; Jiang, D. E.; Mullins, D. R.; Zhang, Q. F.; Allard, L. F. Jr.; Wang, L. S.; Overbury, S. H. Diphosphine-protected Au22 nanoclusters on oxide supports are active for gas-phase catalysis without ligand removal. Nano Lett. 2016, 16, 6560–6567.

2

Yuan, S. F.; Luyang, H. W.; Lei, Z.; Wan, X. K.; Li, J. J.; Wang, Q. M. A stable well-defined copper hydride cluster consolidated with hemilabile phosphines. Chem. Commun. 2021, 57, 4315–4318.

3

Chen, J.; Zhang, Q. F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L. S. Controlling gold nanoclusters by diphospine ligands. J. Am. Chem. Soc. 2014, 136, 92–95.

4

Gu, W. M.; Zhao, Y.; Zhuang, S. L.; Zha, J.; Dong, J. W.; You, Q.; Gan, Z. B.; Xia, N.; Li, J.; Deng, H. T. et al. Unravelling the structure of a medium-sized metalloid gold nanocluster and its filming property. Angew. Chem., Int. Ed. 2021, 60, 11184–11189.

5

Xia, N.; Yuan, J. Y.; Liao, L. W.; Zhang, W. H.; Li, J.; Deng, H. T.; Yang, J. L.; Wu, Z. K. Structural oscillation revealed in gold nanoparticles. J. Am. Chem. Soc. 2020, 142, 12140–12145.

6

Li, Y. W.; Jin, R. C. Seeing ligands on nanoclusters and in their assemblies by X-ray crystallography: Atomically precise nanochemistry and beyond. J. Am. Chem. Soc. 2020, 142, 13627–13644.

7

Zeng, C. J.; Weitz, A.; Withers, G.; Higaki, T.; Zhao, S.; Chen, Y. X.; Gil, R. R.; Hendrich, M.; Jin, R. C. Controlling magnetism of Au133(TBBT)52 nanoclusters at single electron level and implication for nonmetal to metal transition. Chem. Sci. 2019, 10, 9684–9691.

8

Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 2016, 320–321,238-250.

9

Lei, Z.; Wang, Q. M. Homo and heterometallic gold(I) clusters with hypercoordinated carbon. Coord. Chem. Rev. 2019, 378, 382–394.

10

Li, J. J.; Guan, Z. J.; Yuan, S. F.; Hu, F.; Wang, Q. M. Enriching structural diversity of alkynyl-protected gold nanoclusters with chlorides. Angew. Chem., Int. Ed. 2021, 60, 6699–6703.

11

Wang, J.; Wang, Z. Y.; Li, S. J.; Zang, S. Q.; Mak, T. C. W. Carboranealkynyl-protected gold nanoclusters: Size conversion and UV/Vis-NIR optical properties. Angew. Chem., Int. Ed. 2021, 60, 5959–5964.

12

Shen, H.; Deng, G. C.; Kaappa, S.; Tan, T. D.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Highly robust but surface-active: An N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem., Int. Ed. 2019, 58, 17731–17735.

13

Shen, H.; Xu, Z.; Hazer, M. S. A.; Wu, Q. Y.; Peng, J.; Qin, R. X.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Surface coordination of multiple ligands endows N-heterocyclic carbene-stabilized gold nanoclusters with high robustness and surface reactivity. Angew. Chem., Int. Ed. 2021, 60, 3752–3758.

14

Fang, Y. P.; Bao, K.; Zhang, P.; Sheng, H. T.; Yun, Y. P.; Hu, S. X.; Astruc, D.; Zhu, M. Z. Insight into the mechanism of the CuAAC reaction by capturing the crucial Au4Cu4-π-alkyne intermediate. J. Am. Chem. Soc. 2021, 143, 1768–1772.

15

Hamze, R.; Peltier, J. L.; Sylvinson, D.; Jung, M.; Cardenas, J.; Haiges, R.; Soleilhavoup, M.; Jazzar, R.; Djurovich, P. I.; Bertrand, G. et al. Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science 2019, 363, 601–606.

16

Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M. Chiral Superatomic nanoclusters Ag47 induced by the ligation of amino acids. Angew. Chem., Int. Ed. 2021, 60, 11430–11435.

17

Luo, Z. X.; Castleman, A. W., Jr.; Khanna, S. N. Reactivity of metal clusters. Chem. Rev. 2016, 116, 14456–14492.

18

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

19

Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076.

20

Li, G. J.; Hu, W. G.; Sun, Y. N.; Xu, J. Y.; Cai, X.; Cheng, X. L.; Zhang, Y. Y.; Tang, A. C.; Liu, X.; Chen, M. Y. et al. Reactivity and lability modulated by a valence electron moving in and out of 25-atom gold nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 21135–21142.

21

Deng, G. C.; Malola, S.; Yuan, P.; Liu, X. H.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Enhanced surface ligands reactivity of metal clusters by bulky ligands for controlling optical and chiral properties. Angew. Chem., Int. Ed. 2021, 60, 12897–12903.

22

Song, Y. G.; Li, Y. W.; Zhou, M.; Liu, X.; Li, H.; Wang, H.; Shen, Y. H.; Zhu, M. Z.; Jin, R. C. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv. 2021, 7, eabd2091.

23

Zhu, H. G.; Yuan, X.; Yao, Q. F.; Xie, J. P. Shining photocatalysis by gold-based nanomaterials. Nano Energy 2021, 88, 106306.

24

Wu, Z. N.; Yao, Q. F.; Zang, S. Q.; Xie, J. P. Aggregation-induced emission in luminescent metal nanoclusters. Nat. Sci. Rev. 2021, 8, nwaa208.

25

Cao, Y. T.; Malola, S.; Matus, M. F.; Chen, T. K.; Yao, Q. F.; Shi, R.; Häkkinen, H.; Xie, J. P. Reversible isomerization of metal nanoclusters induced by intermolecular interaction. Chem 2021, 7, 2227–2244.

26

Zhang, J.; Zhou,Y.; Zheng, K.; Abroshan, H.; Kauffman, D. R.; Sun, J.; Li, G. Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Res. 2018, 11, 5787–5798.

27

Wang, S. X.; Li, Q.; Kang, X.; Zhu, M. Z. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 2018, 51, 2784–2792.

28

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

29

Zhou, C. J.; Li, H.; Song, Y. B.; Ke, F.; Xu, W. W.; Zhu, M. Z. Insights into the effect of surface coordination on the structure and properties of Au13Cu2 nanoclusters. Nanoscale 2019, 11, 19393–19397.

30

Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

31

Das, A.; Li, T.; Nobusada, K.; Zeng, Q.; Rosi, N. L.; Jin, R. C. Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J. Am. Chem. Soc. 2012, 134, 20286–20289.

32

Cai, X.; Saranya, G.; Shen, K. Q.; Chen, M. Y.; Si, R.; Ding, W. P.; Zhu, Y. Reversible switching of catalytic activity by shuttling an atom into and out of gold nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9964–9968.

33

Wang, S. X.; Abroshan, H.; Liu, C.; Luo, T. Y.; Zhu, M. Z.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun. 2017, 8, 848.

34

Qin, Z. X.; Zhang, J. W.; Wan, C. Q.; Liu, S.; Abroshan, H.; Jin, R. C.; Li, G. Atomically precise nanoclusters with reversible isomeric transformation for rotary nanomotors. Nat. Commun. 2020, 11, 6019.

35

Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8.

36

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst 2015, C71, 3–8.

37

Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.

38

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

39

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

40

Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.

41

Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver Atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.

42

Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

43

Yao, C. H.; Chen, J. S.; Li, M. B.; Liu, L. R.; Yang, J. L.; Wu, Z. K. Adding two active silver atoms on Au25 nanoparticle. Nano Lett. 2015, 15, 1281–1287.

44

Qin, Z. X.; Sharma, S.; Wan, C. Q.; Malola, S.; Xu, W. W.; Häkkinen, H.; Li, G. A Homoleptic alkynyl-ligated [Au13Ag16L24]3− cluster as a catalytically active eight-electron superatom. Angew. Chem., Int. Ed. 2021, 60, 970–975.

45

Belger, C.; Neisius, N. M.; Plietker, B. A selective Ru-catalyzed semireduction of alkynes to Z olefins under transfer-hydrogenation conditions. Chem. —Eur. J 2010, 16, 12214–12220.

46

Teo, B. K.; Shi, X. B.; Zhang, H. Rotamerism and roulettamerism of vertex-sharing biicosahedral supraclusters: Synthesis and structure of [(Ph3P)10Au13Ag12Cl8](SbF6). J. Clust. Sci. 1993, 4, 471–476.

47

Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25−x nanoclusters: The 13th silver atom matters. Angew. Chem., Int. Ed. 2014, 53, 2376–2380.

48

Zhang, C. L.; Chen, Y. D.; Wang, H.; Li, Z. M.; Zheng, K.; Li, S. J.; Li, G. Transition metal-mediated catalytic properties of gold nanoclusters in aerobic alcohol oxidation. Nano Res. 2018, 11, 2139–2148.

49

Shi, Q. Q.; Wei, X. J.; Raza, A.; Li, G. Recent Advances in aerobic photo-oxidation of methanol to valuable chemicals. ChemCatChem 2021, 13, 3381–3395.

Nano Research
Pages 2971-2976
Cite this article:
Qin Z, Hu S, Han W, et al. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Research, 2022, 15(4): 2971-2976. https://doi.org/10.1007/s12274-021-3928-4
Topics:

848

Views

42

Crossref

38

Web of Science

38

Scopus

4

CSCD

Altmetrics

Received: 18 August 2021
Revised: 17 September 2021
Accepted: 30 September 2021
Published: 04 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return