Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Precise mono-doping of metal atom into metal particles at a specific particle position (e.g., the central site) in a highly controllable manner is still a challenge. In this work, we develop a highly controllable strategy for exchanging a single Ag atom into the central gold site of Au13Ag12(PPh3)10Cl8 (Ph = phenyl) nanoclusters. Interestingly, a “pigeon-pair” cluster of {[Au13Ag12(PPh3)10Cl8]·[Au12Ag13(PPh3)10Cl8]}2+ is obtained and confirmed by electrospray ionization mass spectrometry (ESI-MS), thermogravimetric analysis (TGA) and single crystal X-ray diffraction (SCXRD) analysis. The experimental results and density functional theory (DFT) calculations suggest that the single-metal-atom exchanging from [Au13Ag12(PPh3)10Cl8]+ to [Au12Ag13(PPh3)10Cl8]+ occurs at the central position through the side entry of the μ3-bridging Cl atoms. Finally, the effects on the electronic structure and properties caused by the single-atom exchange at the central site are shown by the enhancement of fluorescence and catalytic activity in the photocatalytic oxidation of ethanol.
Wu, Z. L.; Hu, G. X.; Jiang, D. E.; Mullins, D. R.; Zhang, Q. F.; Allard, L. F. Jr.; Wang, L. S.; Overbury, S. H. Diphosphine-protected Au22 nanoclusters on oxide supports are active for gas-phase catalysis without ligand removal. Nano Lett. 2016, 16, 6560–6567.
Yuan, S. F.; Luyang, H. W.; Lei, Z.; Wan, X. K.; Li, J. J.; Wang, Q. M. A stable well-defined copper hydride cluster consolidated with hemilabile phosphines. Chem. Commun. 2021, 57, 4315–4318.
Chen, J.; Zhang, Q. F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L. S. Controlling gold nanoclusters by diphospine ligands. J. Am. Chem. Soc. 2014, 136, 92–95.
Gu, W. M.; Zhao, Y.; Zhuang, S. L.; Zha, J.; Dong, J. W.; You, Q.; Gan, Z. B.; Xia, N.; Li, J.; Deng, H. T. et al. Unravelling the structure of a medium-sized metalloid gold nanocluster and its filming property. Angew. Chem., Int. Ed. 2021, 60, 11184–11189.
Xia, N.; Yuan, J. Y.; Liao, L. W.; Zhang, W. H.; Li, J.; Deng, H. T.; Yang, J. L.; Wu, Z. K. Structural oscillation revealed in gold nanoparticles. J. Am. Chem. Soc. 2020, 142, 12140–12145.
Li, Y. W.; Jin, R. C. Seeing ligands on nanoclusters and in their assemblies by X-ray crystallography: Atomically precise nanochemistry and beyond. J. Am. Chem. Soc. 2020, 142, 13627–13644.
Zeng, C. J.; Weitz, A.; Withers, G.; Higaki, T.; Zhao, S.; Chen, Y. X.; Gil, R. R.; Hendrich, M.; Jin, R. C. Controlling magnetism of Au133(TBBT)52 nanoclusters at single electron level and implication for nonmetal to metal transition. Chem. Sci. 2019, 10, 9684–9691.
Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 2016, 320–321,238-250.
Lei, Z.; Wang, Q. M. Homo and heterometallic gold(I) clusters with hypercoordinated carbon. Coord. Chem. Rev. 2019, 378, 382–394.
Li, J. J.; Guan, Z. J.; Yuan, S. F.; Hu, F.; Wang, Q. M. Enriching structural diversity of alkynyl-protected gold nanoclusters with chlorides. Angew. Chem., Int. Ed. 2021, 60, 6699–6703.
Wang, J.; Wang, Z. Y.; Li, S. J.; Zang, S. Q.; Mak, T. C. W. Carboranealkynyl-protected gold nanoclusters: Size conversion and UV/Vis-NIR optical properties. Angew. Chem., Int. Ed. 2021, 60, 5959–5964.
Shen, H.; Deng, G. C.; Kaappa, S.; Tan, T. D.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Highly robust but surface-active: An N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem., Int. Ed. 2019, 58, 17731–17735.
Shen, H.; Xu, Z.; Hazer, M. S. A.; Wu, Q. Y.; Peng, J.; Qin, R. X.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Surface coordination of multiple ligands endows N-heterocyclic carbene-stabilized gold nanoclusters with high robustness and surface reactivity. Angew. Chem., Int. Ed. 2021, 60, 3752–3758.
Fang, Y. P.; Bao, K.; Zhang, P.; Sheng, H. T.; Yun, Y. P.; Hu, S. X.; Astruc, D.; Zhu, M. Z. Insight into the mechanism of the CuAAC reaction by capturing the crucial Au4Cu4-π-alkyne intermediate. J. Am. Chem. Soc. 2021, 143, 1768–1772.
Hamze, R.; Peltier, J. L.; Sylvinson, D.; Jung, M.; Cardenas, J.; Haiges, R.; Soleilhavoup, M.; Jazzar, R.; Djurovich, P. I.; Bertrand, G. et al. Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science 2019, 363, 601–606.
Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M. Chiral Superatomic nanoclusters Ag47 induced by the ligation of amino acids. Angew. Chem., Int. Ed. 2021, 60, 11430–11435.
Luo, Z. X.; Castleman, A. W., Jr.; Khanna, S. N. Reactivity of metal clusters. Chem. Rev. 2016, 116, 14456–14492.
Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.
Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076.
Li, G. J.; Hu, W. G.; Sun, Y. N.; Xu, J. Y.; Cai, X.; Cheng, X. L.; Zhang, Y. Y.; Tang, A. C.; Liu, X.; Chen, M. Y. et al. Reactivity and lability modulated by a valence electron moving in and out of 25-atom gold nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 21135–21142.
Deng, G. C.; Malola, S.; Yuan, P.; Liu, X. H.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Enhanced surface ligands reactivity of metal clusters by bulky ligands for controlling optical and chiral properties. Angew. Chem., Int. Ed. 2021, 60, 12897–12903.
Song, Y. G.; Li, Y. W.; Zhou, M.; Liu, X.; Li, H.; Wang, H.; Shen, Y. H.; Zhu, M. Z.; Jin, R. C. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv. 2021, 7, eabd2091.
Zhu, H. G.; Yuan, X.; Yao, Q. F.; Xie, J. P. Shining photocatalysis by gold-based nanomaterials. Nano Energy 2021, 88, 106306.
Wu, Z. N.; Yao, Q. F.; Zang, S. Q.; Xie, J. P. Aggregation-induced emission in luminescent metal nanoclusters. Nat. Sci. Rev. 2021, 8, nwaa208.
Cao, Y. T.; Malola, S.; Matus, M. F.; Chen, T. K.; Yao, Q. F.; Shi, R.; Häkkinen, H.; Xie, J. P. Reversible isomerization of metal nanoclusters induced by intermolecular interaction. Chem 2021, 7, 2227–2244.
Zhang, J.; Zhou,Y.; Zheng, K.; Abroshan, H.; Kauffman, D. R.; Sun, J.; Li, G. Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Res. 2018, 11, 5787–5798.
Wang, S. X.; Li, Q.; Kang, X.; Zhu, M. Z. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 2018, 51, 2784–2792.
Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.
Zhou, C. J.; Li, H.; Song, Y. B.; Ke, F.; Xu, W. W.; Zhu, M. Z. Insights into the effect of surface coordination on the structure and properties of Au13Cu2 nanoclusters. Nanoscale 2019, 11, 19393–19397.
Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.
Das, A.; Li, T.; Nobusada, K.; Zeng, Q.; Rosi, N. L.; Jin, R. C. Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J. Am. Chem. Soc. 2012, 134, 20286–20289.
Cai, X.; Saranya, G.; Shen, K. Q.; Chen, M. Y.; Si, R.; Ding, W. P.; Zhu, Y. Reversible switching of catalytic activity by shuttling an atom into and out of gold nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9964–9968.
Wang, S. X.; Abroshan, H.; Liu, C.; Luo, T. Y.; Zhu, M. Z.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun. 2017, 8, 848.
Qin, Z. X.; Zhang, J. W.; Wan, C. Q.; Liu, S.; Abroshan, H.; Jin, R. C.; Li, G. Atomically precise nanoclusters with reversible isomeric transformation for rotary nanomotors. Nat. Commun. 2020, 11, 6019.
Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8.
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst 2015, C71, 3–8.
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.
Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.
Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver Atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.
Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.
Yao, C. H.; Chen, J. S.; Li, M. B.; Liu, L. R.; Yang, J. L.; Wu, Z. K. Adding two active silver atoms on Au25 nanoparticle. Nano Lett. 2015, 15, 1281–1287.
Qin, Z. X.; Sharma, S.; Wan, C. Q.; Malola, S.; Xu, W. W.; Häkkinen, H.; Li, G. A Homoleptic alkynyl-ligated [Au13Ag16L24]3− cluster as a catalytically active eight-electron superatom. Angew. Chem., Int. Ed. 2021, 60, 970–975.
Belger, C.; Neisius, N. M.; Plietker, B. A selective Ru-catalyzed semireduction of alkynes to Z olefins under transfer-hydrogenation conditions. Chem. —Eur. J 2010, 16, 12214–12220.
Teo, B. K.; Shi, X. B.; Zhang, H. Rotamerism and roulettamerism of vertex-sharing biicosahedral supraclusters: Synthesis and structure of [(Ph3P)10Au13Ag12Cl8](SbF6). J. Clust. Sci. 1993, 4, 471–476.
Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25−x nanoclusters: The 13th silver atom matters. Angew. Chem., Int. Ed. 2014, 53, 2376–2380.
Zhang, C. L.; Chen, Y. D.; Wang, H.; Li, Z. M.; Zheng, K.; Li, S. J.; Li, G. Transition metal-mediated catalytic properties of gold nanoclusters in aerobic alcohol oxidation. Nano Res. 2018, 11, 2139–2148.
Shi, Q. Q.; Wei, X. J.; Raza, A.; Li, G. Recent Advances in aerobic photo-oxidation of methanol to valuable chemicals. ChemCatChem 2021, 13, 3381–3395.