Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization

Yanyan Li1,2,3,§Wen Luo4,§Duojie Wu5Qi Wang4Jie Yin6Pinxian Xi6Yongquan Qu7Meng Gu5Xinyu Zhang2,3()Zhouguang Lu4()Zhiping Zheng2,3()
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, China
Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Research Centre of Biomedical Nanotechnology, Lanzhou University, Lanzhou 730000, China
School of Chemical Engineering and Technology, Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China

§ Yanyan Li and Wen Luo contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A CeO2 functionalized bimetallic layered double hydroxide (LDH) (CeO2-FeCo LDH) was prepared and showed much enhanced performance over its unmodified parent FeCo LDH and even commercial RuO2 for catalytic oxygen evolution reaction. Mechanistic studies using X-ray photoelectron spectroscopy and electron energy loss spectroscopy revealed location-specific increase of catalysis-responsible Co3+ due to the heterostructure formation between CeO2 and FeCo LDH; an atomic-level understanding of the positive effects of CeO2 functionalization is thus established.

Abstract

Herein, we prepared a bimetallic layered double hydroxide (FeCo LDH) featuring a dandelion-like structure. Anchoring of CeO2 onto FeCo LDH produced interfaces between the functionalizing CeO2 and the parent LDH. Comparative electrochemical studies were carried out. Onset potential, overpotential, and Tafel slope point to the superior oxygen-evolving performance of CeO2-FeCo LDH with respect to FeCo LDH, therefore, demonstrating the merits of CeO2 functionalization. The electronic structures of Fe, Co, and Ce were analyzed by X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) from which the increase of Co3+ and the concurrent lowering of Ce4+ were established. With the use of CeO2-FeCo LDH, accelerated formation at a sizably reduced potential of Co-OOH, one of the key intermediates preceding the release of O2was observed by in situ Raman spectroscopy. We now have the atomic-level and location-specific evidence, the increase of the active Co3+ across the interface to correlate the enhanced catalytic performance with CeO2 functionalization.

Electronic Supplementary Material

Download File(s)
12274_2021_3931_MOESM1_ESM.pdf (1 MB)

References

1

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 4998.

2

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

3

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

4

Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 2011, 660, 254–260.

5

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

6

Lu, F.; Zhou, M.; Zhou, Y. X.; Zeng, X. H. First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: Basic principles and recent advances. Small 2017, 13, 1701931.

7

Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

8

Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.

9

Zhao, J. W.; Li, C. F.; Shi, Z. X.; Guan, J. L.; Li, G. R. Boosting lattice oxygen oxidation of perovskite to efficiently catalyze oxygen evolution reaction by FeOOH: decoration. Research 2020, 2020, 6961578.

10

Xu, H.; Shi, Z. X.; Tong, Y. X.; Li, G. R. Porous microrod arrays constructed by carbon-confined NiCo@NiCoO2 core@shell nanoparticles as efficient electrocatalysts for oxygen evolution. Adv. Mater. 2018, 30, 1705442.

11

Li, C. F.; Zhao, J. W.; Xie, L. J.; Wu, J. Q.; Ren, Q.; Wang, Y.; Li, G. R. Surface-adsorbed carboxylate ligands on layered double hydroxides/metal-organic frameworks promote the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 18129–18137.

12

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

13

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

14

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

15

Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.

16

Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.

17

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

18

Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694–3698.

19

Corrigan, D. A.; Conell, R. S.; Fierro, C. A.; Scherson, D. A. In-situ moessbauer study of redox processes in a composite hydroxide of iron and nickel. J. Phys. Chem. 1987, 91, 5009–5011.

20

Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

21

Chen, J. S.; Li, H.; Chen, S. M.; Fei, J. Y.; Liu, C.; Yu, Z, X.; Shin, K.; Liu, Z. W.; Song, L.; Henkelman, G. et al. Co-Fe-Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts. Adv. Energy Mater. 2021, 11, 2003412.

22

Gao, W.; Xia, Z. M.; Cao, F. X.; Ho, J. C.; Jiang, Z.; Qu, Y. Q. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded. Adv. Funct. Mater. 2018, 28, 1706056.

23

Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062.

24

Qiu, B. C.; Wang, C.; Zhang, N.; Cai, L. J.; Xiong, Y. J.; Chai, Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal. 2019, 9, 6484–6490.

25

Feng, J. X.; Ye, S. H.; Xu, H.; Tong, Y. X.; Li, G. R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv. Mater. 2016, 28, 4698–4703.

26

Zhao, D. D.; Pi, Y. C.; Shao, Q.; Feng, Y. G.; Zhang, Y.; Huang, X. Q. Enhancing oxygen evolution electrocatalysis via the intimate hydroxide-oxide interface. ACS Nano 2018, 12, 6245–6251.

27

Xia, J. L.; Zhao, H. Y.; Huang, B. L.; Xu, L. L.; Luo, M.; Wang, J. W.; Luo, F.; Du, Y. P.; Yan, C. H. Efficient optimization of electron/oxygen pathway by constructing ceria/hydroxide interface for highly active oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1908367.

28

Yu, J.; Wang, J.; Long, X.; Chen, L.; Cao, Q.; Wang, J.; Qiu, C.; Lim, J.; Yang, S. H. Formation of FeOOH nanosheets induces substitutional doping of CeO2−x with high-valence Ni for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2002731.

29

Liu, M. J.; Min, K. A.; Han, B.; Lee, L. Y. S. Interfacing or doping? Role of Ce in highly promoted water oxidation of NiFe-layered double hydroxide. Adv. Energy Mater. 2021, 11, 2101281.

30

Wen, Y. Y.; Wei, Z. T.; Liu, J. H.; Li, R.; Wang, P.; Zhou, B.; Zhang, X.; Li, J.; Li, Z. X. Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution. J. Energy. Chem. 2021, 52, 412–420.

31

Wu, X. X.; Zhang, T.; Wei, J. X.; Feng, P. F.; Yan, X. B.; Tang, Y. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Res. 2020, 13, 2130–2135.

32

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher. S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

33

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. 2014, 126, 7714–7718.

34

Liu, J. T.; Ye, L. Y.; Xiong, W. H.; Liu, T. R.; Yang, H.; Lei, J. P. A cerium oxide@metal-organic framework nanoenzyme as a tandem catalyst for enhanced photodynamic therapy. Chem. Commun. 2021, 57, 2820–2823.

35

Xu, H. J.; Cao, J.; Shan, C. F.; Wang, B. K.; Xi, P. X.; Liu, W. S.; Tang, Y. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem. 2018, 57, 8654–8658.

36

Zheng, Y.; Zhao, C. H.; Li, Y. F.; Zhang, W. Q.; Wu, T.; Wang, Z. C.; Li, Z. P.; Chen, J.; Wang, J. C.; Yu, B. et al. Directly visualizing and exploring local heterointerface with high electro-catalytic activity. Nano Energy 2020, 78, 105236.

37

Tian, Y. H.; Liu, X. Z.; Xu, L.; Yuan, D.; Dou, Y. H.; Qiu, J. X.; Li, H. N.; Ma, J. M.; Wang, Y.; Su, D. et al. Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn–air batteries. Adv. Funct. Mater. 2021, 31, 2101239.

38

Yang, G.; Möbus, G.; Hand, R. J. Cerium and boron chemistry in doped borosilicate glasses examined by EELS. Micron 2006, 37, 433–441.

39

Li, L. J.; Hu, Z. F.; Tao, L.; Xu, J. B.; Yu, J. C. Efficient electronic transport in partially disordered Co3O4 nanosheets for electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 3071–3081.

40

Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q. et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

41

Wang, X. Y.; Liu, Y.; Zhang, T. H.; Luo, Y. J.; Lan, Z. X.; Zhang, K.; Zuo, J. C.; Jiang, L. L.; Wang, R. H. Geometrical-site-dependent catalytic activity of ordered mesoporous Co-based spinel for benzene oxidation: In situ DRIFTS study coupled with Raman and XAFS spectroscopy. ACS Catal. 2017, 7, 1626–1636.

42

Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901–11914.

Nano Research
Pages 2994-3000
Cite this article:
Li Y, Luo W, Wu D, et al. Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization. Nano Research, 2022, 15(4): 2994-3000. https://doi.org/10.1007/s12274-021-3931-9
Topics:
Metrics & Citations  
Article History
Copyright
Return