AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cobalt doped Fe-Mn@CNTs catalysts with highly stability for low-temperature selective catalytic reduction of NOx

Pengfei Li1Tiezhen Zhang2Haixiao Sun1Yufeng Gao1Yanyuan Zhang1Yuanyuan Liu1Chengmin Ge3Hao Chen3Xiaoping Dai1Xin Zhang1( )
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
Petrochina Daqing Petrochemical Research Center, Daqing 163714, China
ShanDong DongYuan New Material Technology Co., Ltd, Dongying 257300, China
Show Author Information

Graphical Abstract

N-doped carbon nanotubes confined Fe, Co, Mn oxides originating from the thermal decomposition of an analogous metal-organic framework-74 (MOF-74) exhibited excellent water and sulfur resistance under the harsh gas environment of the low temperature of 170 °C.

Abstract

In this paper, we report the fabrication of cobalt-doped de-NOx catalyst by pyrolyzing an analogous metal-organic framework-74 (MOF-74) containing Fe & Mn. The resulted catalyst exhibits distinctive microstructures of manganese, cobalt, and iron immobilized on N-doped carbon nanotubes (CNTs). It is found through experiments that the trimetallic catalyst Fe 2Mn1Co0.5/CNTs-50 has the best NH3-selective catalytic reduction (SCR) performance. The Fe2Mn1Co0.5/CNTs-50 exhibited excellent water and sulfur resistance and good stability under the harsh gas environment of 250 °C and/or 170 °C, NO = NH3 = 1,000 ppm, 8 vol.% O2, 20 vol.% H2O, 1,000 ppm SO2, and gas hourly space velocity (GHSV) = 75,000 h−1. The de-NOx conversion was maintained about 55% and 25% after 192 h. The water and sulfur resistance performance were much higher than commercial vanadium series catalyst. The highly water and sulfur resistance performance may be attributed to the unique core–shell microstructure and the synergistic effect of manganese, cobalt, and iron which helps reduce the formation for by-products (NH4HSO4). This study may promote to explore the development of a high stability catalyst for low-temperature selective catalytic reduction of NOx with NH3.

Electronic Supplementary Material

Download File(s)
12274_2021_3932_MOESM1_ESM.pdf (1.5 MB)

References

1

Fu, M. F.; Li, C. T.; Lu, P.; Qu, L.; Zhang, M. Y.; Zhou, Y.; Yu, M. G.; Fang, Y. A review on selective catalytic reduction of NOx by supported catalysts at 100–300 °C—Catalysts, mechanism, kinetics. Catal. Sci. Technol. 2014, 4, 14–25.

2

Qi, G.; Yang, R. T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J. Phys. Chem. B 2004, 108, 15738–15747.

3

Beeckman, J. W.; Hegedus, L. L. Design of monolith catalysts for power plant nitrogen oxide (Nox) emission control. Ind. Eng. Chem. Res. 1991, 30, 969–978.

4

Nicosia, D.; Czekaj, I.; Kröcher, O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution: Part II. Characterization study of the effect of alkali and alkaline earth metals. Appl. Catal. B:Environ. 2008, 77, 228–236.

5

Boudali, L. K.; Ghorbel, A.; Grange, P. Characterization and reactivity of WO3-V2O5 supported on sulfated titanium pillared clay catalysts for the SCR-NO reaction. Comp. Rend. Chim. 2009, 12, 779–786.

6

Macleod, N.; Lambert, R. M. Lean NOx reduction with CO + H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts. Appl. Catal. B: Environ. 2002, 35, 269–279.

7

Qi, G.; Yang, R. T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Appl. Catal. B:Environ. 2003, 44, 217–225.

8

Chang, H. Z.; Li, J. H.; Chen, X. Y.; Ma, L.; Yang, S. J.; Schwank, J. W.; Hao, J. M. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catal. Commun. 2012, 27, 54–57.

9

Si, Z. C.; Weng, D.; Wu, X. D.; Ma, Z. R.; Ma, J.; Ran, R. Lattice oxygen mobility and acidity improvements of NiO-CeO2-ZrO2 catalyst by sulfation for NOx reduction by ammonia. Catal. Today 2013, 201, 122–130.

10

Liu, Z. M.; Zhu, J. Z.; Zhang, S. X.; Ma, L. L.; Woo, S. I. Selective catalytic reduction of NOx by NH3 over MoO3-promoted CeO2/TiO2 catalyst. Catal. Commun. 2014, 46, 90–93.

11

Liu, Z. M.; Liu, Y. X.; Li, Y.; Su, H.; Ma, L. L. WO3 promoted Mn-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2016, 283, 1044–1050.

12

Furukawa, H.; Cordova, K., E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

13

Hong, W. Y.; Perera, S. P.; Burrows, A. D. Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption. Micropor. Mesopor. Mater. 2015, 214, 149–155.

14

Yao, Y. N.; Gao, Z. H.; Lv, Y. C.; Lin, X. Q.; Liu, Y. Y.; Du, Y. X.; Hu, F. Q.; Zhao, Y. S. Heteroepitaxial growth of multiblock Ln-MOF microrods for photonic barcodes. Angew. Chem., Int. Ed. 2019, 58, 13803–13807.

15

Liu, N.; Tian, A. Q.; Ren, Z. L.; Wang, L. Efficient synthesis of sulfonyl diphenylsulfides catalyzed via Cu-MOF of PCN-6. ChemistrySelect 2019, 4, 10972–10974.

16

He, H. J.; Li, H. J.; Cui, Y. J.; Qian, G. D. MOF-based organic microlasers. Adv. Opt. Mater. 2019, 7, 1900077.

17

Davydovskaya, P.; Pentyala, V.; Yurchenko, O.; Hussein, L.; Pohle, R.; Urban, G. A. Work function based sensing of alkanes and alcohols with benzene tricarboxylate linked metal organic frameworks. Sensor. Actuat. B:Chem. 2014, 193, 911–917.

18

Ai, L. H.; Zhang, C. H.; Li, L. L.; Jiang, J. Iron terephthalate metal-organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl. Catal. B:Environ. 2014, 148–149,191-200.

19

Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

20

Chen, Z. J.; Chen, J. Y.; Li, Y. W. Metal-organic-framework-based catalysts for hydrogenation reactions. Chin. J. Catal. 2017, 38, 1108–1126.

21

Cui, W. G.; Zhang, G. Y.; Hu, T. L.; Bu, X. H. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordin. Chem. Rev. 2019, 387, 79–120.

22

Han, J.; Lee, M. S.; Thallapally, P. K.; Kim, M.; Jeong, N. Identification of reaction sites on metal-organic framework-based asymmetric catalysts for carbonyl-ene reactions. ACS Catal. 2019, 9, 3969–3977.

23

Kaur, H.; Venkateswarulu, M.; Kumar, S.; Krishnan, V.; Koner, R. R. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton Trans. 2018, 47, 1488–1497.

24

Zhuo, H. Y.; Yu, X. H.; Yu, Q.; Xiao, H.; Zhang, X.; Li, J. Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts. Sci. China Mater. 2020, 63, 1741–1749.

25

Huo, S. H.; Yan, X. P. Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 2012, 22, 7449–7455.

26

Dong, Z.; Liu, G. L.; Zhou, S. C.; Zhang, Y. Y.; Zhang, W. L.; Fan, A. X.; Zhang, X.; Dai, X. P. Restructured Fe-Mn alloys encapsulated by N-doped carbon nanotube catalysts derived from bimetallic MOF for enhanced oxygen reduction reaction. ChemCatChem 2018, 10, 5475–5486.

27

Wu, R. B.; Qian, X. K.; Zhou, K.; Wei, J.; Lou, J.; Ajayan, P. M. Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 2014, 8, 6297–6303.

28

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

29

Chowdhury, P.; Mekala, S.; Dreisbach, F.; Gumma, S. Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Micropor. Mesopor. Mater. 2012, 152, 246–252.

30

Dathe, H.; Peringer, E.; Roberts, V.; Jentys, A.; Lercher, J. A. Metal organic frameworks based on Cu2+ and benzene-1,3,5-tricarboxylate as host for SO2 trapping agents. Comp. Rend. Chim. 2005, 8, 753–763.

31

Jiang, H. X.; Wang, Q. Y.; Wang, H. Q.; Chen, Y. F.; Zhang, M. H. Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process. Catal. Commun. 2016, 80, 24–27.

32

Zhang, D. S.; Zhang, L.; Fang, C.; Gao, R. H.; Qian, Y. L.; Shi, L. Y.; Zhang, J. P. MnOx-CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3. RSC Adv. 2013, 3, 8811–8819.

33

Fang, C.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Li, H. R.; Ye, L. P.; Zhang, J. P. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 2013, 3, 803–811.

34

Li, Q.; Yang, H. S.; Ma, Z. X.; Zhang, X. B. Selective catalytic reduction of NO with NH3 over CuOx-carbonaceous materials. Catal. Commun. 2012, 17, 8–12.

35

Bai, S. L.; Zhao, J. H.; Wang, L.; Zhu, Z. P. SO2-promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes. Catal. Today 2010, 158, 393–400.

36

Li, J. H.; Chang, H. Z.; Ma, L.; Hao, J. M.; Yang, R. T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catal. Today 2011, 175, 147–156.

37

Zhou, W.; Yildirim, T. Nature and tunability of enhanced hydrogen binding in metal-organic frameworks with exposed transition metal sites. J. Phys. Chem. C 2008, 112, 8132–8135.

38

Deng, J.; Ren, P. J.; Deng, D. H.; Yu, L.; Yang, F.; Bao, X. H. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919–1923.

39

Tabassum, H.; Mahmood, A.; Zhu, B. J.; Liang, Z. B.; Zhong, R. Q.; Guo, S. J.; Zou, R. Q. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ. Sci. 2019, 12, 2924–2956.

40

Kim, N. S.; Lee, Y. T.; Park, J.; Han, J. B.; Choi, Y. S.; Choi, S. Y.; Choo, J.; Lee, G. H. Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines. J. Phys. Chem. B 2003, 107, 9249–9255.

41

Coey, J. M. D. New permanent magnets; manganese compounds. J. Phys. :Condens. Matter. 2014, 26, 064211.

42

Qiao, P. S.; Xu, S. D.; Zhang, D. J.; Li, R. H.; Zou, S. H.; Liu, J. J.; Yi, W. Z.; Li, J. X.; Fan, J. Sub-10 nm Au-Pt-Pd alloy trimetallic nanoparticles with a high oxidation-resistant property as efficient and durable VOC oxidation catalysts. Chem. Commun. 2014, 50, 11713–11716.

43

Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.

44

Feng, X. P.; Mi, W. B.; Bai, H. L. Investigation of structure and magnetic properties of the as-deposited and post-annealed iron nitride films by reactive facing-target sputtering. Appl. Surf. Sci. 2011, 257, 7320–7325.

45

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

46

Ma, X. X.; He, X. Q. Electronically tailoring 3D flower-like graphene via alumina doping and incorporating Co as an efficient oxygen electrode catalyst in both alkaline and acid media. J. Power Sources 2017, 353, 28–39.

47

Guo, K.; Fan, G. F.; Gu, D.; Yu, S. H.; Ma, K. L.; Liu, A. N.; Tan, W.; Wang, J. M.; Du, X. Z.; Zou, W. X. et al. Pore size expansion accelerates ammonium bisulfate decomposition for improved sulfur resistance in low-temperature NH3-SCR. ACS Appl. Mater. Interfaces 2019, 11, 4900–4907.

48

Wu, X. D.; Si, Z. C.; Li, G.; Weng, D.; Ma, Z. R. Effects of cerium and vanadium on the activity and selectivity of MnOx-TiO2 catalyst for low-temperature NH3-SCR. J. Rare Earths 2011, 29, 64–68.

49

Jiang, H. X.; Wang, Q. Y.; Wang, H. Q.; Chen, Y. F.; Zhang, M. H. MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces 2016, 8, 26817–26826.

50

Huang, B. C.; Huang, R.; Jin, D. J.; Ye, D. Q. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catal. Today 2007, 126, 279–283.

51

Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

52

Su, D. Q.; Huang, M.; Zhang, J. H.; Guo, X. M.; Chen, J. L.; Xue, Y. C.; Yuan, A. H.; Kong, Q. H. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868.

53

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

54

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

55

Zhang, Y.; Xie, Y.; Zhou, Y. T.; Wang, X. W.; Pan, K. Well dispersed Fe2N nanoparticles on surface of nitrogen-doped reduced graphite oxide for highly efficient electrochemical hydrogen evolution. J. Mater. Res. 2017, 32, 1770–1776.

56

Bhargava, G.; Gouzman, I.; Chun, C. M.; Ramanarayanan, T. A.; Bernasek, S. L. Characterization of the “native” surface thin film on pure polycrystalline iron: A high resolution XPS and TEM study. Appl. Surf. Sci. 2007, 253, 4322–4329.

57

Wu, Q. L.; Jiang, M. L.; Zhang, X. F.; Cai, J. N.; Lin, S. A novel octahedral MnO/RGO composite prepared by thermal decomposition as a noble-metal free electrocatalyst for ORR. J. Mater. Sci. 2017, 52, 6656–6669.

58

Kushwaha, S.; Karthikayini, M. P.; Wang, G. X.; Mandal, S.; Bhobe, P. A.; Ramani, V. K.; Priolkar, K. R.; Ramanujam, K. A non-platinum counter electrode, MnNx/C, for dye-sensitized solar cell applications. Appl. Surf. Sci. 2017, 418, 179–185.

59

Jin, R. B.; Liu, Y.; Wang, Y.; Cen, W. L.; Wu, Z. B.; Wang, H. Q.; Weng, X. L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl. Catal. B:Environ. 2014, 148–149, 582–588.

60

Chen, S. N.; Yan, Q. H.; Zhang, C.; Wang, Q. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR. Catal. Today 2019, 327, 81–89.

61

Liu, J.; Guo, R. T.; Li, M. Y.; Sun, P.; Liu, S. M.; Pan, W. G.; Liu, S. W.; Sun, X. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study. Fuel 2018, 223, 385–393.

62

Sun, C. Z.; Liu, H.; Chen, W.; Chen, D. Z.; Yu, S. H.; Liu, A. N.; Dong, L.; Feng, S. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chem. Eng. J. 2018, 347, 27–40.

63

Jiang, L. J.; Liu, Q. C.; Ran, G. J.; Kong, M.; Ren, S.; Yang, J.; Li, J. L. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chem. Eng. J. 2019, 370, 810–821.

64

Cai, S. X.; Hu, H.; Li, H. R.; Shi, L. Y.; Zhang, D. S. Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: Improvement of catalytic activity and SO2 tolerance. Nanoscale 2016, 8, 3588–3598.

65

Chen, Y. X.; Li, C.; Chen, J. X.; Tang, X. F. Self-prevention of well-defined-facet Fe2O3/MoO3 against deposition of ammonium bisulfate in low-temperature NH3-SCR. Environ. Sci. Technol. 2018, 52, 11796–11802.

66

Gao, F. Y.; Tang, X. L.; Yi, H. H.; Li, J. Y.; Zhao, S. Z.; Wang, J. G.; Chu, C.; Li, C. L. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 2017, 317, 20–31.

67

Zhang, X.; Guo, Y. C.; Zhang, Z. C.; Gao, J. S.; Xu, C. M. High performance of carbon nanotubes confining gold nanoparticles for selective hydrogenation of 1, 3-butadiene and cinnamaldehyde. J. Catal. 2012, 292, 213–226.

68

Balram, A.; Santhanagopalan, S.; Hao, B. Y.; Yap, Y. K.; Meng, D. S. Electrophoretically-deposited metal-decorated CNT nanoforests with high thermal/electric conductivity and wettability tunable from hydrophilic to superhydrophobic. Adv. Funct. Mater. 2016, 26, 2571–2579.

Nano Research
Pages 3001-3009
Cite this article:
Li P, Zhang T, Sun H, et al. Cobalt doped Fe-Mn@CNTs catalysts with highly stability for low-temperature selective catalytic reduction of NOx. Nano Research, 2022, 15(4): 3001-3009. https://doi.org/10.1007/s12274-021-3932-8
Topics:

818

Views

13

Crossref

13

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 26 July 2021
Revised: 27 September 2021
Accepted: 29 September 2021
Published: 26 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return