Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cluster-based functional materials have made remarkable progress owing to their wonderful structures and distinctive physicochemical performances, one of on-going advancements of which is basically driven by synthetic chemistry of exploring and constructing novel nanosized gigantic polyoxometalate (POM) aggregates. In this article, an unprecedented nanoscale hexameric arsenotungstate aggregate Na9K16H4[Er0.5K0.5(H2O)7][Er5W10O26(H2O)14][B-α-AsW9O33]6·102H2O (1) has been synthesized by the combined synthetic strategy of simultaneously using the arsenotungstate precursor and simple tungstate material in a highly acidic aqueous solution. The {[Er5W10O26(H2O)14][B-α-AsW9O33]6}31− polyanion in 1 consists of an intriguing dumbbell-shaped pentadeca-nuclear W–Er heterometal {Er5W10O26(H2O)14}23+ cluster connecting six trilacunary [B-α-AsW9O33]9− moieties, which has never been seen previously. Furthermore, through electropolymerization of 1 and pyrrole on the conductive substrate, a thickness-controllable and robust 1–PPY (PPY = polypyrrole) hybrid film was successfully prepared, which represents the first POM–PPY film assembled from high-nuclear lanthanide (Ln) encapsulated POM and PPY hitherto. The 1–PPY film-based electrochemical biosensor exhibits a favorable recognition performance for ochratoxin A in multiple media. This work not only provides a feasible combined synthetic strategy of the POM precursor and simple tungstate material for constructing complicated multi-Ln-inserted POM aggregates, but also offers a promising electrochemical platform constructed from POM-based conductive films for identifying trace biomolecules in complex environments.
Tsukamoto, T.; Kambe, T.; Imaoka, T.; Yamamoto, K. Modern cluster design based on experiment and theory. Nat. Rev. Chem. 2021, 5, 338–347.
Peters, B.; Lichtenberger, N.; Dornsiepen, E.; Dehnen, S. Current advances in tin cluster chemistry. Chem. Sci. 2020, 11, 16–26.
Yan, J. Z.; Malola, S.; Hu, C. Y.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun. 2018, 9, 3357.
Devi, T.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Metal ion-coupled electron-transfer reactions of metal-oxygen complexes. Coord. Chem. Rev. 2020, 410, 213219.
Anyushin, A. V.; Kondinski, A.; Parac-Vogt, T. N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications. Chem. Soc. Rev. 2020, 49, 382–432.
Li, M. F.; Zhang, B.; Cheng, T.; Yu, S.; Louisia, S.; Chen, C. B.; Chen, S. P.; Cestellos-Blanco, S.; Goddard III, W. A.; Yang, P. D. Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Res. 2021, 14, 3509–3513.
Wang, J.; Wang, Z. Y.; Li, S. J.; Zang, S. Q.; Mak, T. C. W. Carboranealkynyl-protected gold nanoclusters: Size conversion and UV–Vis–NIR optical properties. Angew. Chem., Int. Ed. 2021, 60, 5959–5964.
Colliard, I.; Nyman, M. CeIV70 oxosulfate rings, frameworks, supramolecular assembly, and redox activity. Angew. Chem., Int. Ed. 2021, 60, 7308–7315.
Wang, D.; Liu, L. L.; Jiang, J.; Chen, L. J.; Zhao, J. W. Polyoxometalate-based composite materials in electrochemistry: State-of-the-art progress and future outlook. Nanoscale 2020, 12, 5705–5718.
Ueda, T. Electrochemistry of polyoxometalates: From fundamental aspects to applications. ChemElectroChem 2018, 5, 823–838.
Wang, T.; Ji, T.; Chen, W. L.; Li, X. H.; Guan, W.; Geng, Y.; Wang, X. L.; Li, Y. G.; Kang, Z. H. Polyoxometalate film simultaneously converts multiple low-value all-weather environmental energy to electricity. Nano Energy 2020, 68, 104349.
Benseghir, Y.; Lemarchand, A.; Duguet, M.; Mialane, P.; Gomez-Mingot, M.; Roch-Marchal, C.; Pino, T.; Ha-Thi, M. H.; Haouas, M.; Fontecave, M. et al. Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: In depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9428–9438.
Yu, B.; Zhang, S. M.; Wang, X. Helical microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem., Int. Ed. 2021, 60, 17404–17409.
Wang, J. B.; Chen, W. L.; Wang, T.; Bate, N.; Wang, C. L.; Wang, E. B. A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Res. 2018, 11, 4535–4548.
Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res. 2016, 9, 3858–3867.
Liu, J. C.; Wang, J. F.; Han, Q.; Shangguan, P.; Liu, L. L.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew. Chem., Int. Ed. 2021, 60, 11153–11157.
Wang, J. G.; Tao, Z. C.; Tian, T.; Qiu, J.; Qian, H. S.; Zha, Z. B.; Miao, Z. H.; Ma, Y.; Wang, H. Polyoxometalate nanoclusters: A potential preventative and therapeutic drug for inflammatory bowel disease. Chem. Eng. J. 2021, 416, 129137.
Zong, L. Y.; Wu, H. X.; Lin, H.; Chen, Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149–4168.
Jordan, J. W.; Lowe, G. A.; McSweeney, R. L.; Stoppiello, C. T.; Lodge, R. W.; Skowron, S. T.; Biskupek, J.; Rance, G. A.; Kaiser, U.; Walsh, D. A. et al. Host-guest hybrid redox materials self-assembled from polyoxometalates and single-walled carbon nanotubes. Adv. Mater. 2019, 31, 1904182.
Gobbo, P.; Tian, L. F.; Kumar, B. V. V. S. P.; Turvey, S.; Cattelan, M.; Patil, A. J.; Carraro, M.; Bonchio, M.; Mann, S. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells. Nat. Commun. 2020, 11, 41.
He, P.; Chen, W. L.; Li, J. P.; Zhang, H.; Li, Y. W.; Wang, E. B. Keggin and Dawson polyoxometalates as electrodes for flexible and transparent piezoelectric nanogenerators to efficiently utilize mechanical energy in the environment. Sci. Bull. 2020, 65, 35–44.
Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240.
Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem., Int. Ed. 2019, 58, 2980–2999.
Stuckart, M.; Monakhov, K. Y. Polyoxometalates as components of supramolecular assemblies. Chem. Sci. 2019, 10, 4364–4376.
Wang, D.; Li, Y. M.; Zhang, Y.; Xu, X.; Liu, Y.; Chen, L. J.; Zhao, J. W. Construction of Ln3+-substituted arsenotungstates modified by 2, 5-thiophenedicarboxylic acid and application in selective fluorescence detection of Ba2+ in aqueous solution. Inorg. Chem. 2020, 59, 6839–6848.
Liu, J. C.; Han, Q.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 8416–8420.
Ibrahim, M.; Mereacre, V.; Leblanc, N.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Self-assembly of a giant tetrahedral 3d-4f single-molecule magnet within a polyoxometalate system. Angew. Chem., Int. Ed. 2015, 54, 15574–15578.
Li, H. L.; Lian, C.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Two unusual nanosized Nd3+-substituted selenotungstate aggregates simultaneously comprising lacunary Keggin and Dawson polyoxotungstate segments. Nanoscale 2020, 12, 16091–16101.
Wassermann, K.; Dickman, M. H.; Pope, M. T. Self-assembly of supramolecular polyoxometalates: The compact, water-soluble heteropolytungstate anion [AsIII12CeIII16(H2O)36W148O524]76−. Angew. Chem., Int. Ed. 1997, 36, 1445–1448.
Hussain, F.; Conrad, F.; Patzke, G. R. A gadolinium-bridged polytungstoarsenate(III) nanocluster: [Gd8As12W124O432(H2O)22]60−. Angew. Chem., Int. Ed. 2009, 48, 9088–9091.
Hussain, F.; Gable, R. W.; Speldrich, M.; Kögerler, P.; Boskovic, C. Polyoxotungstate-encapsulated Gd6 and Yb10 complexes. Chem. Commun. 2009, 328–330.
Zhao, J. W.; Li, H. L.; Ma, X.; Xie, Z. G.; Chen, L. J.; Zhu, Y. S. Lanthanide-connecting and lone-electron-pair active trigonal-pyramidal-AsO3 inducing nanosized poly(polyoxotungstate) aggregates and their anticancer activities. Sci. Rep. 2016, 6, 26406.
Xiong, J.; Yang, Z. X.; Ma, P. T.; Lin, D. M.; Zheng, Q. J.; Huo, Y. pH-controlled assembly of two polynuclear Dy(III)-containing polytungstoarsenates with magnetic and luminescence properties. Inorg. Chem. 2021, 60, 7519–7526.
Ritchie, C.; Moore, E. G.; Speldrich, M.; Kögerler, P.; Boskovic, C. Terbium polyoxometalate organic complexes: Correlation of structure with luminescence properties. Angew. Chem., Int. Ed. 2010, 49, 7702–7705.
Wassermann, K.; Pope, M. T. Large cluster formation through multiple substitution with lanthanide cations (La, Ce, Nd, Sm, Eu, and Gd) of the polyoxoanion [(B-α-AsO3W9O30)4(WO2)4]28−. Synthesis and structural characterization. Inorg. Chem. 2001, 40, 2763–2768.
Marrot, J.; Pilette, M. A.; Haouas, M.; Floquet, S.; Taulelle, F.; López, X.; Poblet, J. M.; Cadot, E. Polyoxometalates paneling through {Mo2O2S2} coordination: Cation-directed conformations and chemistry of a supramolecular hexameric scaffold. J. Am. Chem. Soc. 2012, 134, 1724–1737.
Han, Q. X.; Sun, X. P.; Li, J.; Ma, P. T.; Niu, J. Y. Beat over the old ground with new strategy: Engineering As···As interaction in arsenite-based dawson cluster β-[W18O54(AsO3)2]6−. Inorg. Chem. 2014, 53, 2006–2011.
Huo, Y.; Huo, Z. Y.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Polyoxotungstate incorporating organotriphosphonate ligands: Synthesis, characterization, and catalytic for alkene epoxidation. Inorg. Chem. 2015, 54, 406–408.
Miao, J.; Chen, Y. L.; Li, Y. W.; Cheng, J. J.; Wu, Q. Y.; Ng, K. W.; Cheng, X.; Chen, R.; Cheng, C.; Tang, Z. K. Proton conducting polyoxometalate/polypyrrole films and their humidity sensing performance. ACS Appl. Nano Mater. 2018, 1, 564–571.
Li, Q. Y.; Zhang, L.; Dai, J. L.; Tang, H.; Li, Q.; Xue, H. G.; Pang, H. Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chem. Eng. J. 2018, 351, 441–461.
Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.
Wang, S.-M.; Kim, Y.; Kim, B.; Han, M.; Kim, E. Ultrathin polyoxometalate coating as the redox shuttle for acid-free electrochromic polymer capacitive windows. Adv. Funct. Mater. 2019, 29, 1806590.
Wang, S. M.; Wang, Y. H.; Wang, T.; Han, Z. B.; Cho, C.; Kim, E. Charge-balancing redox mediators for high color contrast electrochromism on polyoxometalates. Adv. Mater. Technol. 2020, 5, 2000326.
Cheng, N.; Chen, Y.; Zhang, Y.; Liu, Y. Cucurbit[7]uril-mediated 2D single-layer hybrid frameworks assembled by tetraphenylethene and polyoxometalate toward modulation of the α-chymotrypsin activity. ACS Appl. Mater. Interfaces 2020, 12, 15615–15621.
Yang, M. H.; Hong, S. B.; Yoon, J. H.; Kim, D. S.; Jeong, S. W.; Yoo, D. E.; Lee, T. J.; Lee, K. G.; Lee, S. J.; Choi, B. G. Fabrication of flexible, redoxable, and conductive nanopillar arrays with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 22220–22226.
Zhang, X. P.; Ye, T. Y.; Meng, X. H.; Tian, Z. H.; Pang, L. H.; Han, Y. J.; Li, H.; Lu, G.; Xiu, F.; Yu, H. D. et al. Sustainable and transparent fish gelatin films for flexible electroluminescent devices. ACS Nano 2020, 14, 3876–3884.
Li, D. H.; Wang, L.; Ji, W. H.; Wang, H. C.; Yue, X. P.; Sun, Q. Z.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G. et al. Embedding silver nanowires into a hydroxypropyl methyl cellulose film for flexible electrochromic devices with high electromechanical stability. ACS Appl. Mater. Interfaces 2021, 13, 1735–1742.
Zhang, Q.; Peng, B.; Zhao, Y. N.; Li, C. L.; Zhu, S. K.; Shi, K. Q.; Zhou, Z. Y.; Zhang, X. H.; Liu, M.; Pan, J. Y. Flexible CoFeB/silk films for biocompatible RF/microwave applications. ACS Appl. Mater. Interfaces 2020, 12, 51654–51661.
Zhang, C. C.; Wu, J. X.; Sun, Y. W.; Tan, C. W.; Li, T. R.; Tu, T.; Zhang, Y. C.; Liang, Y.; Zhou, X. H.; Gao, P. et al. High-mobility flexible oxyselenide thin-film transistors prepared by a solution-assisted method. J. Am. Chem. Soc. 2020, 142, 2726–2731.
Pramanik, S. K.; Suzuki, H. Switchable microvalves employing a conducting polymer and their automatic operation in conjunction with micropumps with a superabsorbent polymer. ACS Appl. Mater. Interfaces 2020, 12, 37741–37749.
Yin, S. X.; Lu, W. T.; Wu, X; Luo, Q. Y.; Wang, E. Q.; Guo, C. Y. Enhancing thermoelectric performance of polyaniline/single-walled carbon nanotube composites via dimethyl sulfoxide-mediated electropolymerization. ACS Appl. Mater. Interfaces 2021, 13, 3930–3936.
Yin, S. X.; Lu, W. T.; Wu, R. K.; Fan, W. S.; Guo, C. Y.; Chen, G. M. Poly(3, 4-ethylenedioxythiophene)/Te/single-walled carbon nanotube composites with high thermoelectric performance promoted by electropolymerization. ACS Appl. Mater. Interfaces 2020, 12, 3547–3553.
Liu, H. Q.; Wang, Y.; Mo, W. Q.; Tang, H. L.; Cheng, Z. Y.; Chen, Y.; Zhang, S. T.; Ma, H. W.; Li, B.; Li, X. B. Dendrimer-based, high-luminescence conjugated microporous polymer films for highly sensitive and selective volatile organic compound sensor arrays. Adv. Funct. Mater. 2020, 30, 1910275.
Kim, J. H.; Seong, T. Y.; Ahn, K. J.; Chung, K. B.; Seok, H. J.; Seo, H. J.; Kim, H. K. The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films. Appl. Surf. Sci. 2018, 440, 1211–1218.
Qi, G. J.; Wu, Z. L.; Wang, H. L. Highly conductive and semitransparent free-standing polypyrrole films prepared by chemical interfacial polymerization. J. Mater. Chem. C 2013, 1, 7102–7110.
Ratsch, M.; Ye, C.; Yang, Y. Z.; Zhang, A. R.; Evans, A. M.; Börjesson, K. All-carbon-linked continuous three-dimensional porous aromatic framework films with nanometer-precise controllable thickness. J. Am. Chem. Soc. 2020, 142, 6548–6553.
Li, C. G.; Wang, Y. S.; Zou, Y.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Two-dimensional conjugated polymer synthesized by interfacial suzuki reaction: Towards electronic device applications. Angew. Chem., Int. Ed. 2020, 59, 9403–9407.
Yin, Z. X.; Cho, S.; You, D. J.; Ahn, Y. K.; Yoo, J.; Kim, Y. S. Copper nanowire/multi-walled carbon nanotube composites as all-nanowire flexible electrode for fast-charging/discharging lithium-ion battery. Nano Res. 2018, 11, 769–779.
Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.
Bharti, M.; Jha, P.; Singh, A.; Chauhan, A. K.; Misra, S.; Yamazoe, M.; Debnath, A. K.; Marumoto, K.; Muthe, K. P.; Aswal, D. K. Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator. Energy 2019, 176, 853–860.
Singh, A.; Salmi, Z.; Jha, P.; Joshi, N.; Kumar, A.; Decorse, P.; Lecoq, H.; Lau-Truong, S.; Aswal, D. K.; Gupta, S. K. et al. One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air-water interface by photopolymerization. RSC Adv. 2013, 3, 13329–13336.
Wu, D.; Du, D.; Lin, Y. H. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. TrAC Trend. Anal. Chem. 2016, 83, 95–101.
Hou, X. D.; Xu, H.; Zhen, T. Y.; Wu, W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends Food Sci. Technol. 2020, 105, 76–92.
Lin, F.; Sun, Y. J.; Lai, J. P.; Wang, K.; Tang, Y. H.; Chao, Y. G.; Yang, Y.; Feng, J. R.; Lv, F.; Zhou, P. et al. 3D PtFe clusters with cube-in-cube structure enhance oxygen reduction catalysis and electrochemical sensing. Small Methods 2018, 2, 1800073.
Niu, J. Q.; An, W. T.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Ultra-trace determination of hexavalent chromium in a wide pH range triggered by heterometallic Cu-Mn centers modified reduced phosphomolybdate hybrids. Chem. Eng. J. 2021, 418, 129408.
Alhamoud, Y.; Yang. D. T.; Kenston, S. S. F.; Liu, G. Z.; Liu, L. Y.; Zhou, H. B.; Ahmed, F.; Zhao, J. S. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens. Bioelectron. 2019, 141, 111418.
Suea-Ngam, A.; Howes, P. D.; Stanley, C. E.; deMello, A. J. An exonuclease I-assisted silver-metallized electrochemical aptasensor for ochratoxin A detection. ACS Sens. 2019, 4, 1560–1568.
Wang, Z.; Yu, H.; Han, J.; Xie, G.; Chen, S. P. Rare Co/Fe-MOFs exhibiting high catalytic activity in electrochemical aptasensors for ultrasensitive detection of ochratoxin A. Chem. Commun. 2017, 53, 9926–9929.
Hu, S. S.; Ouyang, W. J.; Guo, L. H.; Lin, Z. Y.; Jiang, X. H.; Qiu, B.; Chen, G. N. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens. Bioelectron. 2017, 92, 718–723.
Lv, L.; Li, D. H.; Cui, C. B.; Zhao, Y. Y.; Guo, Z. J. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Biosens. Bioelectron. 2017, 87, 136–141.
Feng, J. H.; Li, Y. Y.; Gao, Z. Q.; Lv, H.; Zhang, X. B.; Fan, D. W.; Wei, Q. Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA. Biosens. Bioelectron. 2018, 99, 14–20.
Qileng, A.; Wei, J.; Lu, N.; Liu, W. P.; Cai, Y.; Chen, M. S.; Lei, H. T.; Liu, Y. J. Broad-specificity photoelectrochemical immunoassay for the simultaneous detection of ochratoxin A, ochratoxin B and ochratoxin C. Biosens. Bioelectron. 2018, 106, 219–226.
Wei, J.; Chen, H. M.; Chen, H. H.; Cui, Y. Y.; Qileng, A.; Qin, W. W.; Liu, W. P.; Liu, Y. J. Multifunctional peroxidase-encapsulated nanoliposomes: Bioetching-induced photoelectrometric and colorimetric immunoassay for broad-spectrum detection of ochratoxins. ACS Appl. Mater. Interfaces 2019, 11, 23832–23839.
Qileng, A.; Liang, H. Z.; Huang, S. L.; Liu, W. P.; Xu, Z. L.; Liu, Y. J. Dual-function of ZnS/Ag2S nanocages in ratiometric immunosensors for the discriminant analysis of ochratoxins: Photoelectrochemistry and electrochemistry. Sens. Actuat. B Chem. 2020, 314, 128066.
Wei, J.; Liu, S. Q.; Qileng, A.; Qin, W. W.; Liu, W. P.; Wang, K.; Liu, Y. J. A photoelectrochemical/colorimetric immunosensor for broad-spectrum detection of ochratoxins using bifunctional copper oxide nanoflowers. Sens. Actuat. B Chem. 2021, 330, 129380.