AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Shape-engineering of organic heterostructures via a sequential self-assembly strategy for multi-channel photon transportation

Yue Yu1Qiang Lv1Yi Yuan1Xue-Dong Wang1( )Liang-Sheng Liao1,2( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau 999078, Macao, China
Show Author Information

Graphical Abstract

Through modulating hierarchical charge-transfer intermolecular interactions and sequential crystal nucleation rate based on the two different cocrystals of benzo(c)phenanthrene-1,2,4,5-tetracyanobenzene (BHT-TCNB) and benzo(c)phenanthrene-1,3-dicyanotetrachlorobenzene (BHT-m-TCP), we accurately prepared three kinds of axial heterostructures involving the unilateral axial organic heterostructures (OHSs), bilateral single-branching axial OHSs and bilateral multi-branching axial OHSs, which realize multi-color emission and multi-channel outputs.

Abstract

The controlled self-assembly of organic heterostructures (OHSs) with precisely defined compositions, architectures, and interfaces, have largely remained a challenge. Herein, we introduce an effective approach to accurately construct three types of axial branching OHSs including unilateral axial OHSs, bilateral single-branching axial OHSs and bilateral multi-branching axial OHSs through modulating hierarchical charge-transfer intermolecular interactions and sequential crystal nucleation rate on account of the two different cocrystals with the low lattice mismatching rate of ~ 2.2%. The present work opens an avenue for rationally designing and finely synthesizing more kinds of OHSs.

Electronic Supplementary Material

Download File(s)
12274_2021_3944_MOESM1_ESM.pdf (994.2 KB)

References

1

Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic semiconductor single crystals for electronics and photonics. Adv. Mater. 2018, 30, 1801048.

2

Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao. Z. N. Patterning organic single-crystal transistor arrays. Nature 2006, 444, 913–917.

3

Tisdale, W. A.; Williams, K. J.; Timp, B. A.; Norris, D. J.; Aydil, E. S.; Zhu. X. Y. Hot-Electron transfer from semiconductor nanocrystals. Science 2010, 328, 1543–1547.

4

Troisi, A. Charge transport in high mobility molecular semiconductors: Classical models and new theories. Chem. Soc. Rev. 2011, 40, 2347–2358.

5

Liu, Y.; Zhan, G.; Liu, Z. W.; Bian, Z. Q.; Huang, C. H. Room-temperature phosphorescence from purely organic materials. Chin. Chem. Lett. 2016, 27, 1231–1240.

6

Shaikh, H.; Jin, X. H.; Harniman, R. L.; Richardson, R. M.; Whittell, G. R.; Manners, I. Solid-State donor-acceptor coaxial heterojunction nanowires via living crystallization-driven self-assembly. J. Am. Chem. Soc. 2020, 142, 13469–13480.

7

Yu, Y.; Tao, Y. C.; Zou, S. N.; Li, Z. Z.; Yan, C. C.; Zhuo, M. P.; Wang, X. D.; Liao, L. S. Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications. Sci. China Chem. 2020, 63, 1477–1482.

8

Yao, W.; Han, G. C.; Huang, F.; Chu, M. M.; Peng, Q.; Hu, F. Q.; Yi, Y. P.; Jiang, H.; Yao, J. N.; Zhao, Y. S. “H”-like organic nanowire heterojunctions constructed from cooperative molecular assembly for photonic applications. Adv. Sci. 2015, 2, 1500130.

9

Zheng, J. Y.; Yan, Y. L.; Wang, X. P.; Shi, W.; Ma, H. M.; Zhao, Y. S.; Yao, J. N. Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides. Adv. Mater. 2012, 24, OP194–OP199.

10

Liu, X. T.; Wang, K.; Chang, Z.; Zhang, Y. H.; Xu, J. L.; Zhao, Y. S.; Bu, X. H. Engineering donor-acceptor heterostructure metal-organic framework crystals for photonic logic computation. Angew. Chem., Int. Ed. 2019, 58, 13890–13896.

11

Sun, Y. Q.; Lei, Y. L.; Hu, W. P.; Wong, W. Y. Epitaxial growth of nanorod meshes from luminescent organic cocrystals via crystal transformation. J. Am. Chem. Soc. 2020, 142, 7265–7269.

12

Deng, L. L.; Shi, H. Y.; Meng, X.; Chen, S. F.; Zhou, H. W.; Xu, Y.; Li, X. G.; Wang, L. H.; Liu, B.; Huang, W. Pure and stable top-emitting white organic light-emitting diodes utilizing heterojunction blue emission layers and wide-angle interference. ACS Appl. Mater. Interfaces 2014, 6, 5273–5280.

13

Nam, S.; Oh, N.; Zhai, Y.; Shim, M. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS Nano 2015, 9, 878–885.

14

Zhang, Y. J.; Dong, H. L.; Tang, Q. X.; Ferdous, S.; Liu, F.; Mannsfeld, S. C. B.; Hu, W. P.; Briseno, A. L. Organic single-crystalline p-n junction nanoribbons. J. Am. Chem. Soc. 2010, 132, 11580–11584.

15

Dodabalapur, A.; Katz, H. E.; Torsi, L.; Haddon, R. C. Organic heterostructure field-effect transistors. Science 1995, 269, 1560–1562.

16

Lin, Y. H.; Huang, W. T.; Pattanasattayavong, P.; Lim, J.; Li, R. P.; Sakai, N.; Panidi, J.; Hong, M. J.; Ma, C.; Wei, N. N. et al. Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nat. Commun. 2019, 10, 4475.

17

Gao, Z. H.; Xu, B. Y.; Zhang, T. J.; Liu, Z.; Zhang, W. G.; Sun, X.; Liu, Y.; Wang, X.; Wang, Z. F.; Yan, Y. L. et al. Spatially responsive multicolor lanthanide-mof heterostructures for covert photonic barcodes. Angew. Chem., Int. Ed. 2020, 59, 19060–19064.

18

Mazzio, K. A.; Luscombe, C. K. The future of organic photovoltaics. Chem. Soc. Rev. 2015, 44, 78–90.

19

He, Z. C.; Xiao, B.; Liu, F.; Wu, H. B.; Yang, Y. L.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Single-Junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 2015, 9, 174–179.

20

Yang, F.; Shtein, M.; Forrest, S. R. Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat. Mater. 2004, 4, 37–41.

21

Behura, S. K.; Wang, C.; Wen, Y.; Berry, V. Graphene-Semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics 2019, 13, 312–318.

22

Zhou, Z. H.; Zhao, J. Y.; Du, Y. X.; Wang, K.; Liang, J.; Yan, Y. L.; Zhao, Y. S. Organic printed core-shell heterostructure arrays: A universal approach to all-color laser display panels. Angew. Chem., Int. Ed. 2020, 59, 11814–11818.

23

Xu, F. F.; Li, Y. J.; Lv, Y. C.; Dong, H. Y.; Lin, X. Q.; Wang, K.; Yao, J. N.; Zhao, Y. S. Flat-Panel laser displays based on liquid crystal microlaser arrays. CCS Chem. 2020, 2, 369–375.

24

Shi, C. Y.; Zhang, Q.; Tian, H.; Qu, D. H. Supramolecular adhesive materials from small-molecule self-assembly. SmartMat. 2020, 1, e1012.

25

Treat, N. D.; Chabinyc, M. L. Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics. Annu. Rev. Phys. Chem. 2014, 65, 59–81.

26

Liu, H.; Cheng, X.; Bian, Z. Y.; Ye, K. Q.; Zhang, H. Y. Four organic crystals displaying distinctively different emission colors based on an ESIPT-active organic molecule. Chin. Chem. Lett. 2018, 29, 1537–1540.

27

Zhuo, M. P.; Wang, X. D.; Liao, L. S. Construction and optoelectronic applications of organic core/shell micro/nanostructures. Mater. Horiz. 2020, 7, 3161–3175.

28

Shi, Y. L.; Wang, X. D. 1D organic micro/nanostructures for photonics. Adv. Funct. Mater. 2021, 31, 2008149.

29

Zhu, W. G.; Wang, Y. L.; Huang, C. C.; Zhu, L. Y.; Zhen, Y. G.; Dong, H. L.; Wei, Z. X.; Guo, D.; Hu, W. P. Polymorph and anisotropic Raman spectroscopy of Phz-H2ca cocrystals. Sci. China Mater. 2021, 64, 169–178.

30

Gierschner, J.; Varghese, S.; Park, S. Y. Organic single crystal lasers: A materials view. Adv. Opt. Mater. 2016, 4, 348–364.

31

Cui, Q. H.; Jiang, L.; Zhang, C.; Zhao, Y. S.; Hu, W. P.; Yao, J. N. Coaxial organic p-n heterojunction nanowire arrays: One-step synthesis and photoelectric properties. Adv. Mater. 2012, 24, 2332–2336.

32

Lorang, D. J.; Tanaka, D.; Spadaccini, C. M.; Rose, K. A.; Cherepy, N. J.; Lewis, J. A. Photocurable liquid core-fugitive shell printing of optical waveguides. Adv. Mater. 2011, 23, 5055–5058.

33

Cai, W.; Wang, J. Q.; Liu, H.; Chen, W.; Wang, J.; Du, L. P.; Hu, J.; Wu, C. S. Gold nanorods@metal-organic framework core-shell nanostructure as contrast agent for photoacoustic imaging and its biocompatibility. J. Alloys Compd. 2018, 748, 193–198.

34

Zhuo, M. P.; Wu, J. J.; Wang, X. D.; Tao, Y. C.; Yuan, Y.; Liao, L. S. Hierarchical self-assembly of organic heterostructure nanowires. Nat. Commun. 2019, 10, 3839.

35

Bolla, G.; Dong, H. L.; Zhen, Y. G.; Wang, Z. H.; Hu, W. P. Organic cocrystals: The development of ferroelectric properties. Sci. China Mater. 2016, 59, 523–530.

36

Lu, Y. L.; Tang, Y. Q.; Lin, H. Y.; Fang, X. Y.; Lu, B.; Li, D.; Yan, D. P. Selective formation of luminescent chiral cocrystal: Molecular self-assembly of 2, 2′-binaphthol and 2-(3-pyridyl)-1H-benzimidazole. Chin. Chem. Lett. 2018, 29, 1541–1543.

37

Pan, M. L.; Wang, C.; Zhuo, M. P.; Li, Z. Z.; Yuan, Y.; Tao, Y. C.; Wang, X. D. Sequential self-assembly of organic heterostructured architectures composed of low-dimensional microcrystals. ACS Mater. Lett. 2020, 2, 658–664.

38

Wang, K.; Zhang, W. Q.; Gao, Z. H.; Yan, Y. L.; Lin, X. Q.; Dong, H. Y.; Zhang, C. H.; Zhang, W.; Yao, J. N.; Zhao, Y. S. Stimulated emission-controlled photonic transistor on a single organic triblock nanowire. J. Am. Chem. Soc. 2018, 140, 13147–13150.

39

Chandrasekhar, N.; Mohiddon, M. A.; Chandrasekar, R. Organic submicro tubular optical waveguides: Self-assembly, diverse geometries, efficiency, and remote sensing properties. Adv. Opt. Mater. 2013, 1, 305–311.

40

Yao, W.; Yan, Y. L.; Xue, L.; Zhang, C.; Li, G. P.; Zheng, Q. D.; Zhao, Y. S.; Jiang, H.; Yao, J. N. Controlling the structures and photonic properties of organic nanomaterials by molecular design. Angew. Chem., Int. Ed. 2013, 52, 8713–8717.

Nano Research
Pages 3781-3787
Cite this article:
Yu Y, Lv Q, Yuan Y, et al. Shape-engineering of organic heterostructures via a sequential self-assembly strategy for multi-channel photon transportation. Nano Research, 2022, 15(4): 3781-3787. https://doi.org/10.1007/s12274-021-3944-4
Topics:

648

Views

2

Crossref

3

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 09 September 2021
Revised: 14 October 2021
Accepted: 20 October 2021
Published: 15 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return